
  
    [image: Cover image]
  


  

    
      
          
            
  
      DIGITAL
SUPERPOWERS

A whirlwind tour of readily-available tools that turbocharge productivity, ignite creativity, and empower learning

Nick Touran

digitalsuperpowers.com


      

    


      

    

    

  

    
      
          

              © 2018-2024 Nicholas W. Touran

              All Rights Reserved

              digitalsuperpowers.com


		Icons on cover are from FontAwesome, used under a CC BY 4.0 License available at
  		  https://fontawesome.com/license/free. Modifications to the laptop icon were made.


        Revision 2.0


            

            

        

    

  

    
      
          
            
  
Digital Superpowers



	Introduction
	Intended audience

	About me

	Philosophy





	Fundamentals
	Basic parts of computers

	Operating systems

	Files and folders

	The command line

	Programs and package managers

	Password managers

	Making secure but memorizable passwords with Diceware

	Two-factor authentication

	Common scams





	Around the House
	Life-changing keyboard shortcuts

	Avoiding printer dry-out

	Get to know your router

	Setting a strong Wi-Fi password

	Guest networks

	Avoiding DNS hijack

	Opening ports

	Virtual machines

	Ad-blockers

	Using a VPN Service

	The Onion Router and the dark web

	Planning a night of star-gazing





	Around the Office
	Note on office suites

	Concentrating in offices

	Note Taking

	Screenshots

	Text editors and extensions

	Column editing

	Slicing and dicing PDFs

	Ultimate find and replace (regular expressions)

	Encrypted communications

	Making flowcharts

	The GNU utilities





	Art Studio
	Basic image manipulation

	Computer graphics

	The digital darkroom

	Making podcasts, music, and sound effects

	DJing a party or show

	Movies

	Making games





	Publishing
	Publishing online

	Publishing PDFs

	Publishing eBooks (and books)





	Programming
	Tracking changes of anything

	Why program?

	Programming languages

	Writing Python programs

	The bridge to machine learning

	Graphical User Interfaces

	Web applications





	Robotics and Hardware
	The era of cheap, user-friendly microcontrollers

	Some basic peripherals

	An interactive art installation

	Even cheaper microcontrollers

	A star-tracking camera mount for astrophotography

	Controlling hardware directly from your laptop





	Self-Hosting
	Getting your own server

	Well-polished self-hosted catch-all

	Self-hosted home automation and security

	Set up your own VPN Server

	Your own webserver

	Hosting your own contacts and calendar

	Personal cloud for documents and photos

	Self-hosting your own e-mail





	Conclusion







	Glossary






Footnotes



            

          

      

      

    

  

    
      
          
            
  
Introduction

Computers are everywhere. They’re in our purses, our offices, our TVs, our hobby-dens,
our cars, and our toasters. Many of us spend significant parts of our days operating these
machines in the palms of our hands and on our desks or couches. They entertain us and make
us laugh. They connect us to family and help us find love. They help us get reports
written and make project videos at school.  They facilitate our work by crunching numbers,
formatting documents, and helping us express our ideas.
In a sense, they are extensions of our brains. But many of us could be getting more out of
our computers. This book will show you how.

Computers are capable of being dozens of
appliances, gadgets, and even large facilities. This overwhelming breadth of capability is easy
to overlook. I’ve been keeping a list:


Several things that computers are capable of being

	TV

	Movie player

	Phone/address book

	Phone



	Drafting table

	Diary

	Encyclopedia

	Photo album



	Nintendo

	Typewriter

	Calculator

	Dictionary



	Musical tuner

	Atlas

	Audio studio

	Newspaper



	Darkroom

	Printshop

	GPS

	Card game



	Calendar

	Card catalog

	Radio

	File cabinet






This book posits that some powerful capabilities of the computers many people have on
hand are neither well-known nor easy to discover. Getting exposure to some of them
will directly improve your life at home, school, work, and play. Seeing these in action
should inspire thoughts to blossom about new achievements you can reach, as well as
how to do your current activities better and with more pleasure.


Intended audience

This book is written with a few readers specifically in mind:



	The everyday school, home, and office computer user who wants to take it to the next level


	The artist looking for ideas and orientation regarding computers


	The entrepreneur looking for new/modern skills and pathways to success


	The scientist who knows the computer can help, but isn’t sure how to get started


	The retiree looking to keep up-to-date on tech


	The executive who wants to be better informed on IT tools







We will go through many hands-on examples that you will be able to follow right away.
But because every superpower could have (and likely does have) multiple books written
specifically about it, each will not be treated in
detail. Thus, you should be ready and willing to dig (sometimes significantly) deeper into
anything we talk about here when it makes sense for you to seek mastery.  This is not an
in-depth tutorial on one topic, but rather a guided tour of many for you to pick up
based on your needs and interests.

I assume you have a baseline level of computer knowledge. Ideally, you’ll already know how
to install a program, copy and paste things, how to make a slide deck, and some basics in
a spreadsheet. If you don’t, you’ll still get something out of this, but don’t expect
this book to teach you all of those things. This is a solidly intermediate book.

Each chapter will progress from basic to more complicated in an effort
to cover the broad scope, and the wide range of experience and interest out there.



About me

I’m a lifelong computer lover who has spent many personal and professional years learning
about them.  As much as I love computers, I really wanted to work on the energy/climate
problem, so I went into nuclear engineering. Conveniently, it’s a field
that can be computationally heavy. So I applied computer interests to
simulating nuclear chain reactions. Guided by many mentors through the years, I enjoyed
seeking out and learning new or interesting technologies, and after many years, found
myself with a fairly significant body of knowledge on hand.

Along the way, I got into technical communication by founding https://whatisnuclear.com.
I have been told that I have a knack for explaining complex things.

Then one day I thought, “Sheesh! A lot of people could use some help looking deeper into
computers in their daily lives.” and so here we are.



Philosophy

It seems that computers have diminished from exciting world-changers to dull keepers of the
spreadsheet and the cat video. People use computers within the bounds of the
programs they have without knowing to explore what else is possible or available
to make their lives easier and better. I want to illuminate the possibilities of
computers to help people lead more exciting, engaged, and fulfilling lives using equipment they
already have sitting around.

In the spirit of accessibility, this book highlights many free and open-source tools first
while mentioning key proprietary software when appropriate.



Footnotes



            

          

      

      

    

  

    
      
          
            
  
Fundamentals

This chapter starts with basics and covers a few bits of info and best practices that
everyone who uses computers regularly will benefit from knowing. We’ll build more
superpowers based on this foundation in the later chapters.


Basic parts of computers

Computers bring in, manipulate, and present data with lightning speed and hardly any
moving parts. This is why they’ve had such a massive impact on our lives, and have brought
forth the information age. For a bit of context, here are the key components in computers
that perform all that wonder:







	Component

	Purpose





	Central Processor Unit

	The CPU is the brain and does most of the number crunching. Faster is better, speed
is measured in billions of computation cycles per second (gigahertz).



	Memory (RAM)

	The working short-term fast-acting memory; it holds the data while the CPU crunches it.
More is better, measured in billions of octets of ones and zeros (gigabytes).



	Hard drive

	The long-term but slower memory. It saves your files and photos and spreadsheets.
Also measured in gigabytes.



	Monitor

	Displays information visually. On phones, it’s an input device too. Measured in the number
of horizontal and vertical picture elements (pixels).



	Network card

	Sends and receives data to/from other computers for posting cat
pictures, etc. Measured in billions of ones and zeros communicated per second (Gbps).








Operating systems

When a computer turns on, a series of simple built-in operations run to check the
processor and memory, and to figure out what other hardware is attached. Eventually,
enough systems are online to read larger and more complex programs from the hard disk. In
a sense, the computer is pulling itself up by its bootstraps (hence the term “booting
up”). At this point, the computer will find an Operating System (OS) on the hard disk,
which will tell the computer how to run everyday programs like an office suite or a web
browser and everything else.

There are many OSs out there, but we’re going to mostly just talk about three of
them: Microsoft Windows, Apple macOS, and Linux. The first two are familiar to everyone. The
third is an open-source product (meaning it’s available for anyone for free and that
anyone can look at its underlying source code) developed over the years by a community of
volunteers and professionals. Linux is the underlying technology behind Google’s Android
OS and also runs many of the servers powering the internet. In the past few years,
more people started running Linux on their personal laptops and desktops as a
powerful, cost-effective, fun, and philosophically-pure alternative. We’ll try hard
to make sure everything discussed in this book works fine in all three of these OSs.



Files and folders

As you probably know, most computer systems store information in a hierarchical structure
of nested digital folders (aka directories) on the hard drive. You put your photos in
the Photos folder, and so on. You can create folders and files, delete them, rename them,
copy them, paste them, etc.


Note

If you are unfamiliar with copy/paste, you are in for a treat. It is a core
superpower but you may benefit more from this book after learning about it. The WikiHow[URL01]
page on it is fantastic. I’d also be a little worried that this book is slightly too
advanced for you.  If you already know about copy/paste but not the keyboard shortcuts
(Ctrl-C, Ctrl-V) just know that those shortcuts are speed-demons.



We’ve all lost files in folders before. Many of us have opened a document from e-mail and
worked on it all day only to close the editor and then never find the file again. This
usually happens when it gets saved to some temporary folder where files downloaded from
the internet go. I’ve done this myself many times, and have fielded dozens of calls for
help from friends through the years due to this. The solution is the Save As button,
which is distinct from Save in that it lets you choose where to save a file as opposed
to just saving it where it was opened from.  Click it, navigate to a normal place like
Documents, and save it there. Problem solved!

Organizing folders is an ongoing battle for many of us as well. We try breaking things down by
file type (Photos, Documents, Music) and then by year. Sometimes for multi-year projects,
it doesn’t go well and you may need a Projects folder. It’s deeply personal, so just
explore what works best for you. For photos, one nice method is to
organize them by year and then name subfolders with the month and then an incrementing
integer and an event, like 07.1 Fourth of July or 12.4 Yodit's Christmas Sweater
Party. Operating system designers are often trying
to move away from the hierarchical structure and use tags (so a file can have multiple
tags, similar to being in multiple folders at once) but we’re not quite there yet.


Backups

Backups are really important, and I don’t know a lot of people who take them very
seriously besides professional IT staff. I personally am really obsessed with my document,
photo, and music collections and would be just heartbroken if I lost them in a fire,
robbery, hardware failure, electromagnetic pulse, earthquake, volcano, and/or nuclear war.
But even I am not great with backups. The main categories of data loss to protect against
are:


	Hardware fails and data can’t be recovered


	Hardware is stolen or hacked and can’t be recovered


	User (or family member) accidentally deletes data




A reasonable and easy solution for backups is the cloud which we will discuss momentarily.

A more-difficult-to-implement but conceptually straightforward method for slow-moving data
is to buy two external USB hard drives with a few terabytes of space. Copy all your
important files over to them both. Take one to work or a friend’s house or some other
off-site location. Every month or six months or whenever (depends on your pace of
accumulating new stuff that you care about), copy new files onto them and swap them. This
will protect your archival data against robbery and fire but not necessarily earthquakes
or EMPs. For those, you need more distance.

Of course, there’s the challenge of finding out which files are out of date, and having the
discipline to regularly update the backups. Figuring this out and quickly synchronizing is
the job of the thousands of backup software products you’ll hear about out on the market.
Sure, you could just copy everything over every day, but that would take a long time and
wear out your disks. Most modern operating systems like Windows, Linux, and macOS come
with backup utilities. Try those out or look for third-party commercial products.

As your digital superpowers develop, you will become knowledgeable in a few other systems
that will lead you to exceedingly slick backup options. git-annex is an advanced
option worth noting that builds on the git tool you’ll learn about in
Programming.  It’s quite powerful for keeping well-organized and
secure backups. For scientific, engineering, and data users, the datalad tool builds
further upon git-annex to add reproducibility on top of backups, so your scientific
results can be perfectly replicated by anyone in the future. In particular, datalad
auto-discovers any output files created by running particular commands and tracks the
input, commands, and output.



Network Attached Storage (NAS)

It’s not too uncommon these days to have a NAS in the home. These are lightweight
computer/appliances containing big hard drives that you can connect to your home
computers. Professional photographers and videographers all have these. They offer some
benefits in terms of sharing files across the family’s computers and in terms of data
reliability (they’re often resilient against a single failure of one hard drive). You can
buy them for a few hundred bucks or, if you’re into the hobby of it, you can turn an old
computer into a NAS. PC Magazine[URL02] (bless their hearts) runs a review
of the latest and greatest NAS machines every year, so check them out for more advice.


Warning

NAS provides some level of backup, but they do not help in the event of
fires, burglary, or sometimes even accidental deletion. Some NAS products come with nicely
polished backup software that can help with your offsite backups.





File Encryption

If your phone or laptop gets lost or stolen with all your work and online dating on it, no
problem, right? Because you have a backup? Great job! But you may still worry because
there’s a lot of personal and confidential stuff on most devices. It’s
wise to keep your private matters private no matter if they’re just
your mom’s recipes. You DO have something to hide!
If someone gets access to your e-mail for instance, they can reset your bank
password and cause all sorts of ruckus. So let’s just hide your data.

Encryption is the process of scrambling the bits on your hard drive in such a fashion that
even if someone steals the computer/phone, they will not be able to access the information
within. Without encryption, a bad guy or random teen could just plug a cable in
and see all your information. Math to the rescue!

Options for encrypting your hard drives in different systems:







	Kind of computer

	Encryption options





	Windows

	Find the BitLocker program and activate full-disk encryption



	Linux PC

	Choose to encrypt entire drive during installation.



	Mac

	Find the FileVault utility and set it to encrypt the full disk



	Android phone

	Search settings for “Encryption” and ensure it is enabled. If not, enable it. Make
sure to set a strong PIN or other credential



	iPhone

	Almost always encrypted by default; set a strong PIN







Warning

If you encrypt something and then forget the password, your data is very
nearly impossible to recover (by design, after all that is the point). Hopefully you have
a backup! This seems obvious but it is a little scary. Just be careful.





The Cloud

The Cloud is a nebulous term that really just means “a large semi-automated collection of nearly
identical computers out there on the internet that is operated by some company.” A lot of
computation is moving to The Cloud because of the efficiencies of scale inherent to mega-operators like
Amazon Web Services. The deal The Cloud offers to new business owners is that they will deal with
the hassle of procuring, maintaining, and servicing the computers, allowing you to focus on
software, marketing, and users. In other words, you do you. If you do really well and need 10,000
new computers right now, they click a button and (bloop-bleep) it’s done. If you mess up and
everyone starts deleting their account on your service, (bleep-bloop) those computers are no longer
reserved for you. What a deal! Services like Netflix and Uber run on cloud-based
back ends operated by other companies, like Amazon, Google, or Microsoft.

What does it mean to you? Many services offer the ability to automatically
synchronize files on your hard drive with their hard drives in the cloud (via the network
card). This is nice because when you take a photo on your phone, it shows up on your
computer. If you experience a tsunami, anything that was synced in The Cloud
far away will survive and re-sync when you get a new computer.

Services like Dropbox, Microsoft’s OneDrive, and Apple’s iCloud do this. If you’re
uninterested in running your own server or dealing with your own backups, I have to
recommend using these services. The risk, as always, is that you have to trust them,
because they can see all of your files. Also, with computer systems being so complex, they
always have some new severe vulnerability, so it’s probably just a matter of time until
these services are breached.  At that point, the biggest services will be the most likely
target. On the other hand, they also probably have the best defenses. Just something to
think about.

It’s the same story with e-mail. If you use a web-based e-mail system in the cloud you can
just log on from anyone’s computer and have it.




The command line

Vast computer superpowers are controlled by a somewhat-obscure window into your computer:
The Command Line (or Terminal). Go onto your computer and launch it. On Windows, click
Start, and type cmd and click Command Line when you see it (or just press
enter). On macOS, go to the Finder and then click Go → Utilities → Terminal.
In Linux, just hit Ctrl-Alt-T.  A little box will pop up with an ominous blinking
prompt.  That’s it.  That’s the command line. You’re gaping into a universe of
possibility, like in Men in Black when they gape into the cat’s necklace and it’s a
whole galaxy.

The idea here is that you type commands in and it responds by doing something.
These commands are precise, expressive, and repeatable; you can tell the computer exactly
what you want and it will do it. As you’ll see in later chapters, this can be
significantly faster than pointing and clicking, especially for repeated actions. In other
words, a command is worth a thousand clicks.

Most importantly, hundreds of grand-slam superpowers are hidden in small and simple command-line
utilities, the majority of which are freely available. The elegant design benefit that led to the
existence of these rich tools is one of reductionism: many complex operations can be
broken down into a series of simple operations. For example, consider a spell-checker from
a software developer’s perspective. If she writes a word processor and needs spell
checking, she can either write an entire spell-checker in addition to the word processor,
OR pray that someone else has made a spell-checker before and made it available for her
to pull in and use. As it turns out there is indeed a spell-checker library and utility
that’s available in this regard and it has a command-line interface. Thousands
of such building blocks exist, and they’re all available to you right now through the
command line.

There is a reputation that the command line is for “advanced” users only. I don’t think
this is true at all, and I hope I can convince you that it’s accessible and useful for
everyone. We’ll leverage the command line quite frequently in this book.


Note

When you read something like “Type this in” from now, and it’s unclear where to
type it, it’s very likely the command line.



Let’s type some commands in to see that it’s fun and easy.








	Operation

	Windows

	Linux/macOS





	Which folder am I in?

	pwd

	pwd



	What files exist in this folder?

	dir

	ls



	Move up one folder in the hierarchy

	cd ..

	cd ..



	Move back to the original folder, [NAME]

	cd [NAME]

	cd [NAME]



	Print the current time and date

	date /T and/or time /T

	date



	Print the computer’s uptime

	net statistics server

	uptime



	Make a folder

	mkdir cat_pictures

	mkdir cat_pictures



	Remove a folder

	rmdir cat_pictures

	rmdir cat_pictures



	Convert units

	units "12 cups" mL

	units "12 cups" mL



	Make a cow say something

	N/A :(

	cowsay "Oh man I love Linux"






That last one is not a joke.

[image: _images/cowsay.png]
Some commands come with an OS and others have to be installed from a third party. The last
two examples above are the latter, and the installation of units is discussed
in Unit conversion, so you’ll actually have to wait until then to try out that command.

Here are a few productivity enhancers in the command line:


	If you ever want to get the previous command again (to either rerun it or modify it
slightly and then rerun it), press the up arrow on your keyboard. Each time you
press it goes up in a history of all the commands you’ve executed. The down arrow goes
in the other direction.


	If you’re typing out a command you can often press TAB to auto-complete it. For
instance, if there is a folder called my_very_long_folder_name you can just type cd
my_very and then press TAB and it will fill in the rest. This is called tab
completion. I cringe badly and then speak up when people don’t use it because it can
save hours per day when you’re working heavily in the command line.


	You can copy and paste commands into the command line.


	At least in Windows, you can drag a file into the command line instead of typing its
full path.


	If you ever typed a command that’s taking too long or isn’t what you wanted, you can
abort it by pressing and holding the CTRL key and then pressing C.






Programs and package managers

Your computer undoubtedly came with some programs, and you have probably downloaded and
installed others. It was once a big pain to go out and find/install the latest versions of
various programs and to keep them up to date. In the Linux world, this was solved years
ago with special programs called Package managers, which are simple little commands that
know how to go find, download, install, keep up-to-date, and (if desired) uninstall
programs. macOS and Windows have started catching up and there are now good package
managers for them as well. Without further ado, it’s time for your next superpower:
package management!


Note

This is optional but will make it easier to follow along in
sections of the book that rely on special programs. In all future uses, you can
alternatively search for the program at hand, find its web page, download it, and run
its installer.




Warning

These programs change what’s on your computer (that’s the point). It is
unlikely but possible that something will go wrong. Try these out on a computer that you
can afford to break if you’re just learning.



macOS has one de-facto standard package manager called Homebrew[URL03] that can be installed
from the command line by running the following command (which is also on their
webpage if you’d like to copy/paste it):

/usr/bin/ruby -e "$(curl -fsSL https://raw.githubusercontent.com/Homebrew/install/master/install)"





A good package manager called Chocolatey[URL04] is available on Windows. To get it, you have to
open the Command Prompt with Administrative privileges, meaning commands you type can
change system settings. You generally do this by typing cmd in the Start Menu and
clicking the choice that has the word “Administrator” in it (or by right-clicking the
normal Command Prompt choice and choosing “Run as Administrator”).  Once you’re in,
copy/paste the command shown at https://chocolatey.org/install into it and press
Enter to run it (it’s simply too long to reasonably put in this book expecting you
to type it). You may have to right-click and choose Paste to paste, or (in Windows)
just press Control-V.


[image: A screenshot of the command line in Windows 10]

Opening the Administrator Command Line in Windows 10 (hover your mouse over and
right-click, then left click on the Administrator option). You generally have to use
the Administrator option every time you run a choco command.



Now you have a package manager and can install common programs with simple commands!
The commands will look similar to what’s shown below. We’ll provide similar tables
frequently.


Installing programs with package managers





	OS

	Command





	Windows

	choco install [program_name].



	Linux

	apt install [program_name]



	macOS

	brew install --cask [program_name] or brew install [program_name]






After issuing a command like these, there may be some prompts and alerts that scroll by as
the packages are downloaded and installed. In some cases, if things look frozen, you may
have to just press Enter (I had to do this in choco a few times). If you install a
large package, the process may take a few minutes depending on your internet connection
speed.


Note

In Windows with choco you have to either run refreshenv or open a new
command terminal after you install a program before it is available as a new command-line
program.



You can just as easily uninstall anything installed through these systems by running the
same kind of command but with uninstall or remove instead of install. And you
can update as well.

Life’s getting easier already! Let’s put that new skill to work.



Password managers

You know that feeling when you are trying to buy something and the web page
forces you to make a new account? Many of us just reuse the same old password again and
again, maybe with a few modifications based on the site name. This ends up being really
dangerous in addition to annoying because the likelihood that Arnold’s Pizza Shop has
rock-solid security practices is low, and after you give (roughly) the same password to
a billion such establishments, the probability of some nefarious hacker breaking
into them and getting your password approaches 100%.

Annoying and dangerous!? Hopefully there’s a superpower for that. Indeed, there is:
Password Managers. Password managers are programs you run on your computer or phone
that do two essential things:


	They act as your own personal encrypted vault of passwords so you can look them up
easily when you need them


	They have random password generators that will whip up a 25-character password
whenever you need a new one for Arnold’s Pizza Shop or similar




If you use a unique and random password for everything, the threat discussed above is
neutralized. Plus you don’t have to type in the password ever, Password Managers allow you
to copy it and then paste it right into the web form. In this workflow, you never actually
know most of your passwords.


Tip

You will still need to memorize a few key passwords for extra-important accounts. Just
keep them unique. See Making secure but memorizable passwords with Diceware below for ways to do this well.



There are some great open-source password managers out there like KeePassXC[URL05] as well as
commercial offerings (with better support) such as LastPass[URL06] or 1Password[URL07]. A good
combo is to put your KeePassXC database in a cloud synchronization program so it
synchronizes across all your devices.

To try out KeePassXC with a package manager (see above), run the following in the Command
Line:


Installing KeePassXC with your package manager





	OS

	Command





	Windows

	choco install keepassxc



	Linux

	apt install keepassxc



	macOS

	brew install --cask keepassxc






You may also want to store credit cards in your password manager, making it really easy to
copy/paste them into web forms when shopping.

Of course there is a new threat now: If someone finds out the one password you use for
your password manager and has access to your files, they can get all of your passwords at
once. This is less likely to happen, but you should consider it when typing your master
password into the password manager. Keep in mind that Edward Snowden puts a blanket over
his head whenever he types a password, and he’s somebody who knows what’s
going on out there.


Tip

Does your password at work auto-expire every few months? Companies used to think this
was good for security but in 2016, NIST released guidelines saying that unnecessary
auto-expiry was leading people to choose weak passwords. They now recommend to only
force someone to change a password if there’s been evidence of a data breach. Same
with password complexity (it’s no longer wise to require mixes of uppercase and
symbols), just make a long password and check it against a common password
list.





Making secure but memorizable passwords with Diceware

For the few very strong passwords you do need to memorize, the Diceware method is here to
help. Here are the steps:


	Grab a Diceware word list like one of these[URL08] from the
EFF.
These have 5-digits between 1 and 6 (for each possible value of a die). Here is an
excerpt:

46663   reflex
46664   reflux
46665   refocus
46666   refold
51111   reforest
51112   reformat
51113   reformed
51114   reformer







	Get 5 dice and roll them. Line them up and then look up the word that corresponds to the
values you rolled (if you had 4, 6, 6, 6, 4, your first word would be reflux, from
the list above).


	Roll 4–7 more times. Now you have 5–8 random words. String them together and that’s
your super-secure but still memorizable password.





Note

Don’t have 5 dice sitting around? You can find online generators of diceware
passwords. Just know that they aren’t random enough and the Diceware method recommends
against using anything but actual dice. Besides, everyone should have some dice around
for playing 10,000 [1].





Two-factor authentication

Two-factor authentication (2FA) is a login method offered by many web pages and
institutions these days. It makes it so you have to type a password and also type in a
one-time code sent to your phone via text or through a special app. The idea here is to
combine something you know (your password) with something you have (your phone). It’s
similar to typing your zip code at the gas pump when using a credit card [2], or a
PIN with a ATM card. For your most important accounts, it’s really essential to turn it on
to minimize the likelihood that someone can access them. Banks, big shopping sites, and
e-mail providers are good first places to start. You can learn how to activate it with a
web search along the lines of:

activate [web page name] two-factor authentication





The new risks here are that it takes longer to log in and, if you lose your phone, it’s extra hard
to just reset your password. Such are the tradeoffs. Many companies are relaxing the pain
by only requiring that you use the 2FA code on new computers so it’s not all that bad.
Other companies make you obtain and enter a 2FA token twice per transaction, which is
really annoying.


Warning

Getting 2FA tokens through text messages is probably better than nothing, but
it’s significantly less safe than using a dedicated 2FA app. Why? Because it’s possible
for a bad guy to use social engineering to convince your phone operator to change your
phone number to a different SIM card, thereby allowing them to access your 2FA tokens and
get into your accounts. This has happened in serious attacks, such as one on CloudFlare
in 2012[URL09].
It’s much harder for them to get access to an app on your phone.





Common scams

Billions of dollars are lost each year to fraud, much of which occurs on computers.
You should always be a little skeptical if someone you don’t know asks you to pay for
anything or give you access. Here are a few guidelines for avoiding fraud.


	Never give your password out

No well-meaning entity will ever ask you for your password on the phone or in e-mail or
in any other place than a log-in form. If this ever happens to you,
you should recognize it as a huge red flag.



	Computer companies will never call you

There are lots of scams where people pretend to be calling from some big company you’ve
heard of offering to fix something on your computer if you just go to a certain link.
This is someone trying to access your PC to find banking information about you. Hang up!



	E-mails where people know an old password of yours don’t have video of you

Through the years, various companies have experienced data breaches. If you had an
account with any of them with a weak password (i.e. a single dictionary word), they may
e-mail you and say they know your password and claim that they hacked into your computer
and recorded you doing something naked or private. They threaten they’ll send it to all
your friends if you don’t send them about $1000 via Bitcoin. It’s very unlikely they
have anything on you since these breaches are widely available. If you used that same
password on other accounts, you do need to change it, like, yesterday. See
https://haveibeenpwned.com/ for help in checking to see which accounts of yours have
been compromised in known breaches.



	If someone tells you that you’re in big trouble, but they can help, it’s probably a scam

You may get a call saying that you have dozens of unpaid violations at [your county
courthouse] but if you go down to Walgreens and get $2000 worth of gift cards and read
them one after the other to this person on the phone they’ll get you out of it. That’s a
scam. Gift cards are very hard to trace and are a favorite instrument of scammers. If
you’re in actual trouble just deal with it through the proper channels and get a lawyer.
This happens with people impersonating the IRS as well. They may know a little about
you, like where you live and some previous addresses. This is all public record but it
makes the scam seem more real. Don’t fall for it. If you’re really unsure, ask them for
the number of their institution, check it online, and then call them back.



	Watch out for phishing

Phishers will send you an e-mail that looks like it’s from a familiar institution.  It
will have the right logos, the right address, and will have a link you can click to do
something important, like reset a password or confirm something. The best defense here
is to hover your mouse over the link and take a look in the address bar (usually at the
bottom of the screen) to see where the link is actually going. If it’s to some weird
internet address or some misspelling of the actual site, it’s a scam. If you do click
the link, you can also check the address bar of the web browser. Be careful, these can
be very tricky.  This has been such a problem that your employer may hire someone to
send phishing-like messages to you and if you click them you’ll have to take mandatory
training. It’s like anti-phishing phishing.



	Ransomware is real

If you get a message that all your files are encrypted and you have to pay to get them
decrypted, it may be real; especially if you can’t access your files. Ideally, you’ll
have a backup of your files and can just wipe your computer clean and restore the
backup. Otherwise, you have to choose whether you want to give the criminal what
they want or kiss your files goodbye. Another good reason to have backups!





Those are just a few. The FBI has hundreds more to watch out for at
https://www.fbi.gov/scams-and-safety/common-fraud-schemes.



Well, that sums up chapter one. I hope you’ve learned something new and useful.

Footnotes



[1]
A surprisingly fun dice game, similar to Farkle. Try it out, you won’t
regret it: https://en.wikipedia.org/wiki/Dice_10000



[2]
In the USA, ZIP codes are used for credit card authentication at many
self-serve gas pumps because the cards themselves don’t have PINs like they do in most of
the rest of the world.



[URL01]
https://www.wikihow.com/Copy-and-Paste



[URL02]
https://www.pcmag.com/article2/0,2817,2401086,00.asp



[URL03]
https://brew.sh/



[URL04]
https://chocolatey.org/install



[URL05]
https://keepassxc.org/



[URL06]
https://www.lastpass.com/



[URL07]
https://1password.com/



[URL08]
https://www.eff.org/deeplinks/2016/07/new-wordlists-random-passphrases



[URL09]
https://blog.cloudflare.com/the-four-critical-security-flaws-that-resulte/







            

          

      

      

    

  

    
      
          
            
  
Around the House

You browse the web through your phone and computers at home, you print stuff, you e-mail
friends, you learn, you play. In this chapter, we’ll make these more pleasant, productive,
and safe.


Life-changing keyboard shortcuts

You probably use a keyboard, at least a little.  A few subtly-sublime keyboard
shortcuts can really speed up your work and play. You may have heard that
professional typists never click around in a word to go back and make corrections, they
just delete the world and hammer it out again in under a second. These shortcuts can help
you when changing text in anything (e-mail, word processor, web browser, etc.).
Anything you can do to prevent yourself from switching from keyboard to mouse
and back is going to turbocharge you. If you think about it, the keyboard is more
expressive than a mouse. Try them out; you’ll love them!


Some surprisingly useful keyboard shortcuts while editing text:

	Effect

	Windows/Linux

	macOS





	Delete previous entire word

	Control-Backspace

	Option-Delete



	Delete next entire word

	Control-Delete

	Function-Delete



	Move cursor to previous or next word

	Control-LEFT, Control-RIGHT

	Option-LEFT, Option-RIGHT



	Move cursor to beginning of line

	Home

	Control-A



	Move cursor to end of line

	End

	Control-E



	Move cursor to beginning of document

	Control-Home

	Command-Up



	Move cursor to end of document

	Control-End

	Command-Down






Here’s the kicker: for all of these “move cursor” shortcuts, you can throw a SHIFT
in there as well to select everything from where you are now to where the cursor’s going
to go. Once something is selected you can delete it, copy it, change the formatting…
You can do anything!


Exercise

Try these out. Open an e-mail editor and type out a
sentence of your choosing. Now don’t leave the keyboard! From the end of the sentence
press Shift-Control-Left (to select the previous word) and then press Left
three more times (while keeping Shift-Control held). This should have selected
the previous three words. Copy them with Control-C, press End, and press
Control-V a few times to paste them.

Now try Control-Shift-Home followed by Backspace. You’re really hauling
now!

(macOS people use the equivalents from the table above)



I didn’t learn Control-backspace until well into my career and it has really been
useful since then.

Besides editing text, keyboard shortcuts can streamline web-browsing too. The same
“leaving the keyboard is slow” philosophy applies online in its own way. The most
essential shortcut takes you to the address bar with Control-L
(Command-L on a Mac). Now you can type a new web address or a search and just press
enter to proceed.

To turbocharge this, combine it with the !bangs feature of the DuckDuckGo search
engine and you’ll really be moving. If you set DuckDuckGo as your default search provider
(something you can do in the settings of your web browser), then you can put, for
instance, a !t anywhere in the search and it will take you directly to the thesaurus
page for your search term. So big !t goes to a thesaurus page for the word big.
Thousands of bang codes are available, and you can even submit your own. Here are
a few more good ones:


Some other awesome DuckDuckGo !bang codes

	!d Dictionary

	!a Amazon



	!g Google

	!gi Google images



	!gschol Google Scholar

	!wu Weather Underground



	!w Wikipedia

	!cl Craigslist



	!fb Facebook

	!yt YouTube



	!tw Twitter

	!pub PubMed






That’s right, if you whimsically want to conjure up your ex-boyfriend while you’re in the
middle of reading a news article, you can just type Control-L !fb Jacob
Olson Enter and there he will be. Sigh.

Dozens of other keyboard shortcuts are available in various browsers. See if you can find
the list of them (usually in Help → Keyboard shortcuts) and see if any others seem
useful to you.



Avoiding printer dry-out

Printers have a bad reputation for never working right and having really expensive ink.
Regarding the ink issue, InkJet printer jets dry out if they’re not used frequently. So if
you’re shocked by a printer never really working or always needing its jets cleaned, that’s
why. If you print less than once a month but still really need that printer when you need
it, consider getting a laser printer instead. They’re a bit more expensive (especially for
color or combo printer/scanner), and their color for photo-printing is not as good, but
their ink reliability is usually worth it for a lot of people.



Get to know your router

Home networks consist of public internet coming in from your internet service provider
(e.g. Comcast) and going into your router which distributes it around your house via
Wi-Fi radio waves and sometimes Ethernet cables. Your router and each device connected to
it gets assigned Internet Protocol (IP) addresses, which are like street addresses, but for
the internet backbone. There exist a few special blocks of IP addresses for local networks
(e.g. the one in your home), and the most common of these is anything that starts with
192.168.


[image: digraph fig {     isp [label=<Public internet via ISP<br /><FONT FACE="Courier">82.234.111.239</FONT>>];    neighbor [label=<Your neighbor<br /><FONT FACE="Courier">82.234.111.240</FONT>>];    neighbor_wifi [label=<Neighbor's router<br /><FONT FACE="Courier">192.168.1.1</FONT>>];    router [label=<Your Router<br /><FONT FACE="Courier">192.168.1.1</FONT>>];    Phone1 [label=<Phone 1<br /><FONT FACE="Courier">192.168.1.102</FONT>>];    Phone2 [label=<Phone 2<br /><FONT FACE="Courier">192.168.1.103</FONT>>];    Laptop [label=<Laptop<br /><FONT FACE="Courier">192.168.1.104</FONT>>];    SmartTV [label=<Smart TV<br /><FONT FACE="Courier">192.168.1.105</FONT>>];     isp->router->{Phone1, Phone2, Laptop, SmartTV};     isp->neighbor->neighbor_wifi;     {rank=same;isp,neighbor};  }]


Your home network with example IP addresses



Your router is a little computer in itself and it has settings where you can change your
Wi-Fi password, set up a guest network, adjust security settings, and other things. It
doesn’t have a screen or keyboard like your laptop so it presents its user interface
through  a web browser. To get to it, simply point your web browser to its IP address,
which is very often 192.168.1.1 or 192.168.0.1. If you struggle, check the bottom
of your router for a sticker that says what its default address is.



Setting a strong Wi-Fi password

With more smart-this and smart-that in the home, the security of your Wi-Fi router is fairly
important. It’s easy for people driving around with laptops to get onto unsecured networks
or ones with easy-to-crack passwords (they’re called war-drivers). It’s no problem to tote
around terabytes of pre-hashed passwords (called rainbow tables) and try to get in. So try
to come up with a password that is unlikely ever to have been used before. As always, no
single dictionary words.


Note

Did you know? Wi-Fi doesn’t really stand for anything.  It’s just riding upon the
good reputation of Hi-Fi stereo equipment, which means High Fidelity. “Wireless fidelity”
would make no sense at all.



You can use your password manager to make a random Wi-Fi password. This might annoy your
family if it’s too hard, but you can at least make it easy to get on by generating a 2-D
barcode (QR code) in a special format. Websites like qifi.org[URL01] do
this for you in a few seconds. Once it’s done, anyone can use a barcode scanner app and just
scan it to get online. Just don’t make it visible from any windows! Also beware that some
devices like printers will still require you to type the password in manually.


[image: Picture of a cell-phone taking a picture of a QR code]

Scanning a QR code to connect to Wi-Fi.





Guest networks

Many Wi-Fi routers allow you to set up a separate network for guests. Doing so
gives them unfettered internet access without exposing your devices to any
viruses or misbehavior they may be dealing with.

It may be wise to connect your Smart TVs and other devices with ulterior motives to
the guest network. Some devices have been known to monitor other devices on the network to
try to figure out how to send better ads or otherwise track you. If they’re on a different
network they can’t watch your phone and laptop.



Avoiding DNS hijack

Have you ever mistyped a web address only to be greeted by a page with ads from your
internet service provider (e.g. Comcast)? That’s something they can do because they are
providing the internet phone book of lookup tables between web page names and actual
server IP addresses (more on this phonebook system, called DNS, in
Publishing). They may also be slower and less secure than some of the other
options. You can adjust your DNS settings in your router’s setup (near where you set the
Wi-Fi password). You’re looking for DNS Server settings or Custom DNS. I recommend
using CloudFlare’s DNS entries for good security and performance:


CloudFlare’s DNS settings

	Primary (IPv4)

	1.1.1.1



	Secondary (IPv4)

	1.0.0.1



	Primary (IPv6)

	2606:4700:4700::1111



	Primary (IPv6)

	2606:4700:4700::1001






They have detailed instructions at https://1.1.1.1 if you’re interested.



Opening ports

Your router acts as a firewall between the dangerous public internet and your devices in
your home. Sometimes you may need to carefully poke holes in this firewall for one reason
or another (you want to access your security system from afar, or your video game needs to
communicate with peers for multiplayer, or something else). This is done in your router
configuration, near the Wi-Fi password setup. Search for Firewall settings and/or Port
Forwarding. Once you find it, you’ll see a table similar to this:

[image: _images/port_forward.png]
In this form you choose which port number to forward and which internal device it should
get forwarded to. So if you had a Raspberry Pi at 192.168.1.106 you wanted to remote
into on Port 22, you’d enter 22 for both the internal and external port, and the IP
address for internal IP address. Make sure that Raspberry Pi is on lock-down though because
it will be subject to Script Kiddies trying to hack into it almost immediately. Consider
using a non-standard port number as the external port to reduce this.



Virtual machines

Virtual Machines (VMs) are programs that emulate a fresh, empty computer. They allow you
to run an entire other operating system as a program on your computer. At home, this can
be really useful if you have a particularly curious family member who really wants to mess
around with computers, but you don’t want them to break yours. You can let them
mess around all they want in the virtual computer on your computer!

Professionally, they’re great for seeing how your products or services work on other kinds
of computers. If you’re making a website on a Mac and want to make sure it works in
Windows, a VM can help [2].

They can also be useful for trying out a program or operating system that you don’t feel
comfortable with or trust for some reason. If it does have a problem, you can just reset
the VM to its initial state. This is a phenomenal way to try out things like Linux that
you’re just curious about getting a feel for. It’s also how security researchers
research and monitor known computer viruses.

A few Virtual Machine managers exist, but let’s just get started with one
called VirtualBox[URL02].


Installing the VirtualBox VM manager





	OS

	Installation method





	Windows

	choco install virtualbox



	Linux

	apt install virtualbox-qt



	macOS

	brew install --cask virtualbox






When you run virtualbox it will pop up a window from which you can either import
pre-made virtual machine “appliances” or make new ones. Here are the steps to try out
Ubuntu Linux in a VM:


	Download the latest Ubuntu image from here[URL03].


	Open virtualbox and choose Machine → New. Name it Ubuntu and set type to
Linux, version: Ubuntu_64.


	Click through the defaults for Memory size, hard disk, etc. (or adjust as you please)


	Click Start to boot the empty machine.


	It will prompt you for a start-up disk. Click the browse button and choose the
downloaded Ubuntu iso image.


	Click Start and the Ubuntu installation process will begin!


	If you haven’t been exposed to Linux before, bask in the glory of how nice it is.





Note

Related to VMs, you’ll also hear about containers which set up isolated “jails” for
programs to run in while sharing the same host operating system. Containers require
less hard-disk space, are faster to spin up and down, and require fewer system resources, so
they’re really popular in modern cloud-based data centers and infrastructure. The Docker
container manager is the most popular. Some software developers/vendors are
distributing their programs these days in docker containers to simplify the setup
process for users.




Nostalgia alert

It’s sometimes fun to re-live your younger years by setting up virtual machines with old
versions of software like DOS and Windows 3.1 (or whatever was around when you were a
kid). You can get the images of the installation discs at places like WinWorld[URL04] and then mount those images one by
one as floppy disks in VirtualBox and have a good old time [1]. Designasaurus,
anyone?

Along these lines, the DOSBox[URL05] project is a better way to
actually play old games on your current computer. It will integrate nicely with modern
video and audio hardware, which is harder to do with pure virtual machines. It’s in your
package managers (dosbox).


[image: An old MS Works word processor]

MS Works running on DOS 6.22 on a Virtualbox VM.






Ad-blockers

Ads are like a sad knock-off of Santa Claus. They track us and watch over our
shoulders as we shop. They try to get us to buy boots for months after we buy some boots.
We can’t afford to give up precious brain
cycles. If they ever sneak onto Netflix, it’s game over. You can do a
few things to reduce your shopper footprint in the nefarious systems of
commercial retail if you so desire. Here are some options:


	Use the Firefox web browser instead of Chrome or Edge, and install the EFF’s Privacy
Badger[URL06] plugin and/or the uBlock ad blocker[URL07]. Google at its core makes most of its money off of
advertising.  Firefox works on your phone as well as on your laptop. Try using your
package manager to install firefox if you don’t have it yet.


	Enable the “DO NOT TRACK” setting in your web browser.


	If you’re into Raspberry Pis (small $30 computers) get another one and install Pi-Hole[URL08] on it. This is slightly advanced (you have to adjust your Wi-Fi
router settings as part of the setup) but is really effective in the home. It “hijacks”
the internet phonebook system (DNS) that maps human-readable internet names (such as
https://this.com) to the actual IP addresses that underlie networking (like
10.0.0.1) and compares them to a crowd-sourced blacklist of advertisers and baddies.
If the name is on the blacklist, the request just gets sent to the abyss. Ads on all
your devices on your home network simply disappear. It’s pretty nice. My Roku tries to
talk to a blacklisted site like 5,000 times per day but can’t get through. Muahahaha.


	Turn off your Wi-Fi and Bluetooth when you’re in malls. They’re apparently watching
metadata from your phone’s modem as you walk around even if you don’t connect to the
hotspot. Look up “people counters” if you don’t believe me.


	Just don’t ever shop or carry a cell phone.


	Move to Antarctica.






Using a VPN Service

Virtual Private Network (VPN) providers are useful for peace of mind, especially while
traveling or in places where you don’t trust the Wi-Fi operators (hotels, coffee shops, on travel
with sensitive business information, hacker-friends’ houses, etc.). When you
get on a network, anyone else on the same access point and especially
the people operating it can “sniff” the network to see what websites you’re going
to and, if there’s no green lock in your browser window, what information you are sending
and receiving (though more and more websites have the green lock these days as a best practice).

You can pay a VPN provider that will help with this. You can
click a button on your computer and it will create a strongly-encrypted connection between
you and the VPN server. Then you will tell the VPN server which sites you want to interact
with and it will go out and do your bidding, sending the results back to you through the
super-encrypted channel. Anyone between you and the VPN is now in the dark as to what
you’re doing online. They can’t see what servers you interact with nor what data is being
sent to and fro. Instead of trusting dozens of operators and their staff along the way,
you only have to trust the VPN provider. Huzzah!


[image: digraph fig {   #graph[margin=0.2, nodesep=0.3, ranksep=0.4];  node [shape=record];       laptop [label="Your laptop"];      guests [label="Other guests"];      hotel [label="Hotel Wi-Fi"];      local_operator [label="Local Wi-Fi contractor"];      laptop -> guests -> hotel -> local_operator [dir="both",color="red",style="dashed"];       local_government [label="Local government"];      routers [label="Nefarious routers"];      website [label="Website"];      local_government->routers->website [dir="both", color="red",style="dashed"];   {rank=same;laptop, local_government}  {rank=same;guests, routers}  {rank=same;hotel, website}   local_operator -> local_government [dir="both",color="red",style="dashed"];  }]


Browsing the web from a hotel. Everyone along the way can
see any non-TLS (i.e. green lock in browser window) traffic and all metadata,
including what sites you’re browsing and for how long. This is bad if you don’t
want people along the way to know what you’re doing.




[image: digraph fig {   #graph[margin=0.2, nodesep=0.3, ranksep=0.4];  node [shape=record];       laptop [label="Your laptop"];      guests [label="Other guests"];      hotel [label="Hotel Wi-Fi"];      local_operator [label="Local Wi-Fi contractor"];      laptop -> guests -> hotel -> local_operator [dir="both",color="green"];       local_government [label="Local government"];      routers [label="Nefarious routers"];      VPN [label="VPN operator"];      website [label="Website"];      routers2 [label="Oblivious routers"];      local_government->routers->VPN  [dir="both", color="green"];      VPN -> routers2 -> website [dir="both", color="red",style="dashed"];   {rank=same;laptop, local_government}  {rank=same;guests, routers}  {rank=same;hotel, VPN}   local_operator -> local_government [dir="both",color="green"]; }]


Browsing the web through a VPN hides what you’re up to from almost everyone.
After the VPN service, metadata is available but it’s anonymized to everyone except the
VPN operator themselves. So you only have to trust the VPN operator in this scenario.



The downside here is that your connection will be at least a little slower since it
has to route everything through the VPN service, wherever it may be.

Companies offering VPN services include ExpressVPN, Private Internet Access VPN, IPVanish,
NordVPN, Cyber Ghost, and many others. Prices are borderline $40–$50/year.

Instead of connecting each of your individual devices to the VPN, you can
alternatively choose to configure your Wi-Fi router as a VPN client (only certain router
models have this feature). I’m not sure this makes too
much sense at home unless you really don’t trust your ISP. Some people actually take a
travel router with them on trips that automatically connects to their VPN, and they only
connect through it. That is particularly neat.

Depending on your interests, you can also run your own VPN service right from your home as
discussed in Set up your own VPN Server.



The Onion Router and the dark web

Speaking of network security, we have to mention the ultimate system in this regard: The
Onion Router (Tor)[URL09] and the so-called dark web. The
underlying technology was started by the US Naval Research Laboratory and later well
funded by DARPA.  Its job is to get you as close as possible to truly anonymous internet
communication where the user doesn’t have to trust anyone along
the communication pathway. It prevents people from monitoring what you browse and it
prevents the sites you visit from knowing where you are.

Web server admins can put their web page up as an onion service and it’s supposed to
be hard to figure out who’s operating it and hard to shut down.

It’s used by secret agents, hacktivists,
normal people who want to try it out, people who want to look something sketchy up
without leaving a trace, and many other legitimate people.

It’s also used by criminals. There is a thriving black market for drug sales coordinated
through Tor and other illicit stuff.

It’s called the onion router because it has many layers. The Tor network
consists of a bunch of nodes run by volunteers. These nodes pass encrypted onion traffic
from node to node. When a user sends a request to browse to website x, their system
chooses a random pathway based on a network directory server, puts a bunch of layers of
encryption over the request, and tosses it into the network. The first Tor server decrypts
the first layer and finds the address of another Tor server so it passes the binary blob
along. The second server pulls off the second layer, and so on.  Eventually, when
no layers remain, the website to visit is revealed. Whichever random server in the Tor
network gets this goes out, grabs the requested information from the website, and sends
the request back through the Tor network to the original user in an equally randomized way.

Tor is not impossible to see through. Governments monitoring networks can know when you’re
on Tor and if they really want, they can have their hackers use one of the thousands of
unpublished major computer bugs (called zero-days) to just get on your computer and
watch what you’re doing directly. Or they can use end-to-end correlation to guess what
you’re doing. If you send a request that causes website x to send you some exact
number of bytes, those bytes will eventually go to your computer. By monitoring the entire
internet, governments can say, “OK well these 3987345 bytes came out of that server and,
ope!  3987345 encrypted bytes just went into this guy’s computer way over here right after
that! I think I know what they’re doing!”

Tor can be useful. But don’t think you can get away with something horrible.

Using Tor is actually really easy. The Tor Project folks have set it up so you just
download their web browser and it auto-connects to Tor and you’re off.
You can find phone apps that trivially connect to it as well.

From your package manager:


Installing Tor Browser





	OS

	Installation method





	Windows

	choco install tor-browser



	Linux

	apt install torbrowser-launcher



	macOS

	brew install tor



	Android

	Download Orbot: Proxy with Tor from Play store or F-Droid






Launch Tor Browser (it’s in your Start Menu in Windows) and you’re good to go. Don’t go
logging into your Facebook now though, that would deanonymize you rather quickly. On
second thought Facebook did make a Tor Service address (https://facebookcorewwwi.onion/)
and that might be a fun first Tor Service to try to access. This would be useful to access
your Facebook when you’re not supposed to. Again, if Facebook is banned where you are,
connecting to Tor might raise some red flags too so just be careful.


Note

Due to the nature of Tor, browsing the web through it is inherently slower.





Planning a night of star-gazing

To wrap up this chapter, let’s leave the network and take a step out into the yard or a
nearby park. Have you ever wondered which star, planet, constellation, or moon you’re
looking at in the night sky?  Ever need to know exactly when an eclipse is going to peak
at a particular location? If so, you’re in luck because your computer and phone can easily
have all this information on it. Stellarium[URL10] is an open-source
planetarium for your computer, available on all platforms, and Androids and iPhones have
apps with some related features.


Installing Stellarium and other star-map software





	OS

	Installation method





	Windows

	choco install stellarium



	Linux

	apt install stellarium



	macOS

	brew cask install stellarium



	Android

	Download Sky Map from Play store or F-Droid



	iPhone

	Download SkyView Lite, or similar






Stellarium allows you to choose your location and date/time (defaults to your here and
now) and shows you the sky. You can search for particular planets or constellations,
figure out which side of the house to set up for an upcoming eclipse, even zoom way in on
deep-space objects like the Horsehead Nebula. You can step through in real-time or in
fast-forward to see how the stars and planets will shift over the night or across the
seasons. If you have a motorized telescope, Stellarium can hook into it and steer it to
(and track) any visible object. It’s a whole lot of fun and you or your family members
will have a wonderful time searching around on it. It’s basically a sky simulator.


[image: Main interface of Stellarium]

Stellarium showing the night of a lunar eclipse.



After you have Stellarium installed, open it and you’ll see its best estimate of your
current sky in your current location. If you push the mouse to the left edge, some widgets
will appear. The first one lets you adjust your location, and the second lets you adjust
the time. Change these to see how the sky changes. If it’s not night, try spinning the
clock until it is night. When you push the mouse to the bottom of the screen, you’ll see
various toggles to turn on and off constellation labels and other points of interest. Now
just click and drag in the screen to turn your view, and scroll with the mouse wheel to
zoom in and out. If you click an object like the Moon, you’ll see all sorts of interesting
information about it. This is a wonderful program for people of all ages.



That’s all we’ll cover for the home. I hope you are already enjoying some of your newfound
superpowers!

Footnotes



[1]
If you want to see exactly how to install old OSs in VirtualBox, check
YouTube for tutorials, and you’ll find dozens of them doing just this.



[2]
You can grab a functional Windows 11 VM from Microsoft at
https://developer.microsoft.com/en-us/windows/downloads/virtual-machines. It took me a
while to figure it out, but they’re zip files that when unzipped can be loaded in
VirtualBox.



[URL01]
https://qifi.org/



[URL02]
https://www.virtualbox.org/



[URL03]
https://www.ubuntu.com/download/desktop



[URL04]
https://winworldpc.com/library/operating-systems



[URL05]
https://www.dosbox.com/



[URL06]
https://www.eff.org/privacybadger



[URL07]
https://www.ublock.org/



[URL08]
https://pi-hole.net/



[URL09]
https://www.torproject.org/



[URL10]
http://stellarium.org/







            

          

      

      

    

  

    
      
          
            
  
Around the Office

Fluorescent lights. Cubicles. Bosses. TPS forms. Computers. Many of us
dread these things even though we go into an office full of them every day and get paid to do so. I
swore to myself in high-school that I’d never end up in one of those places! But when I
actually got a job that involved cubicles, it wasn’t nearly as bad as I expected. One
thing I didn’t realize was just how mentally big a computer can make a small
cubicle. The computer is an infinite window. Inside a computer, we can make wonderful things
happen.  We can coordinate a project with people around the world. We have phenomenal
cosmic power in an itty bitty living space [2].

But we have to make the computer our partner in crime to get into this mindset. The
computer, as an extension of our brains, should be seamless and natural. This
chapter shows how to make that computer at work a more valuable and cooperative
life-comrade.


Note on office suites

A lot of people spend a lot of their time in e-mail programs, presentation software, word
processors, and spreadsheets. Most offices have at least a few people who are power-users
of these programs and are relied upon for giving tips. The superpowers from the previous
chapter should help a lot in these programs. Beyond that, skills in these tools are well-known or
discoverable enough that we just aren’t going to focus on them much. In many
cases, the things you’re learning here provide new options beyond your typical office
suite.



Concentrating in offices

Offices are loud. Open floor plans are making them even louder. Many victims of
such an environment have already discovered how important noise-canceling headphones are
(they’re worth it and can even drown out baby cries on airplanes). I still struggle
sometimes because it’s often difficult for me to concentrate when music is playing. I
discovered a simple solution in the form of a wonderful web page called MyNoise.net[URL01]. They feature free, high-quality noise generators with different
ambiances (like Café Restaurant, Rain, Temple Bells, etc.). I can concentrate fully again;
they’re really a lifesaver. Best of all, they recently released an app that can do offline
playback which is a godsend on airplanes.

You can also make custom white noise in Audacity, discussed below. If you’re on Linux, you
also have a nice noise-generator available on the command line. You can pipe the random
number generator into your speakers at various frequencies (e.g. 10 kHz) like this:

cat /dev/urandom | aplay -r 10000







Note Taking

Organizing thoughts and notes is a time-honored challenge. People come up with all sorts
of ways to take notes, ranging from using real or digital sticky notes for everything, to
putting everything in one or many word processor or text files, to using fancy note taking
applications. Several extremely capable note taking applications have emerged in the past
few years that really do make a difference: Obsidian[URL02] and Logseq[URL03]. To a degree, these are based on concepts that first showed up in
a commercial tool called Roam Research[URL04].


Installing logseq for note taking





	OS

	Installation method





	Windows

	choco install logseq



	Linux

	sudo snap install logseq



	macOS

	brew install --cask logseq






Logseq starts with a daily journal of bullet points. You can write how your day is going.
You can put [[ and ]] characters around certain key phrases (for recurring
meetings, big projects, specific people, specific things) when you mention them, and
logseq will set up bidirectional links to them. So for instance if you mention [[Tom]]
a bunch of times, you can Shift-Click on it as a link and a side window will open
up and show all the times you ever mentioned Tom. It’s exhilarating and extremely
useful. It’s the only note taking system I’ve used daily for over a year.



Screenshots

Oftentimes you’ll need to make a step-by-step tutorial for someone to follow on a computer
system you’re demonstrating at work. For this and other uses, screenshots, or capturing
what’s on your screen to a file or the clipboard can be useful. You can paste what’s
captured into a slide deck, document, or image editor. Generally, pressing the
Print Screen button will capture the entire screen to a file. On Windows, check out
The Snipping Tool (search for it by typing after clicking the Start button), which is
nice because it will let you lasso a rectangle over the region you’d like to snapshot. On
macOS, you just press Command-Shift-4 to get a custom rectangle to snap (it will
save to the Desktop unless you also hold Ctrl, which will send it to the
clipboard). On Linux, the lasso-clipboard is usually Shift-Print Screen.



Text editors and extensions

Many digital superpowers we’ll soon see involve manipulating files containing only text.
There’s minimalism and elegance in pure text files that puts them
at the forefront of power.  Text files are the universal medium upon which many digital
power-tools operate.  Text files are what web pages and new programs are written in (as
you’ll see in Programming). Some poets and writers prefer writing in pure text to
minimize distractions.

“Surprisingly” [3], many computers don’t come with overly useful programs
for viewing and manipulating text files. We’re all used to word processors but those add
special whitespace characters and formatting controls in proprietary (or at least widely
varied) formats that we want to avoid when dealing with text and data. Many computers come
with default text editors (like Notepad) that are bad at dealing with text files properly.

Fortunately, this is easy to reconcile. In Windows, an excellent option called
Notepad++[URL05] can hop into your digital toolbox
with a flourish via your package manager (see Programs and package managers) using:

choco install notepadplusplus





On a Mac, sublime[URL06] is one of many good choices:

brew install --cask sublime-text





On Linux, the often-included editors (like gedit) are likely sufficient for what we’ll
be doing here.


Tip

For those of you who work in text a lot, whether it be for writing books,
programming, making web pages, etc., you may be interested in the next-level text
editors like vim. It’s available on all platforms and has a significant learning
curve. Most people’s first experience is rebooting their computer because they can’t
quit it (hint: use :q). But it is extraordinarily useful if you dedicate yourself to
it. It took me years, but I got to a point where I couldn’t live without it. It’s
basically an advanced magic wand. The best resource to get started is a book called
Practical Vim by Drew Neil[URL07].



We should mention file extensions too. The extension is just the filename suffix; the
stuff after the dot, like txt in myfile.txt. By convention, it determines the type
of a file, and therefore which program your computer will pass it to when you click on
it. Windows and macOS hide these extensions by default, but you can turn it them back on if you
want:


Showing file extensions by default





	OS

	Operations





	Windows

	Start → Type show or hide file extensions → uncheck Hide extensions for
known file type



	Linux

	Already shown ☺



	macOS

	Finder → Preferences → Advanced → Show all file extensions






In text editors, when you are creating a new file and you press Save As, the save
dialog will let you specify both a file name and a file type. If the file type
section is set to something like Text files (*.txt) and you type myfile.dat there
is a reasonable chance it will actually get written as myfile.dat.txt. So if you want
to specify a different extension (e.g. for making a .py file when making a Python
program), then first choose All files (*.*) from the file type dialog and then type
your desired extension in the file name area.



Column editing

This superpower really blew my mind when I first experienced it. Did you know you can edit
an entire column of a text file at the same time? Well, you can, and it’s called Column
Edit or Block Editing. This can really be a time-saver in certain scenarios. For example,
the screenshot below was made by entering Column Select mode and then just typing
testing 123 OK HERE GO a single time:


[image: Column selection in Notepad++]

An example of Column editing in Notepad++. Note that my cursor is 21 lines tall!



I could just as easily go in there and delete all the OKs in another easy swoop.
This is remarkably useful for rapidly manipulating columnar data.

Column editing isn’t available in every text editor, but here are a few that can do it:


How to get to Column Edit mode in various editors





	Editor

	How to activate Column Edit





	Notepad++

	[Click starting point], then hold Alt-Shift and [Click and drag]



	Word

	Alt + [Click/drag] to select. Now you can delete or change formatting but not
insert text.



	Eclipse

	Alt-Shift-A to toggle on and off



	Vim

	From starting point, press Ctrl-v. Now use navigation to select column. Now
edit (i.e. with I) and escape.







Note

In macOS Alt is often replaced by Command.





Slicing and dicing PDFs

Portable Document Format (PDF) files were developed in the 1990s to ensure that documents
would look as intended no matter what hardware or software the viewing user
was running. Before them, files even from different versions of the same program could
experience unintended format changes. The format is defined by an open standard, and as a
result, plenty of programs can create and view PDFs, including many well-known office tools.

The task of modifying PDFs is often reserved for Adobe Acrobat Pro. If you only need to do simple
modifications, however, you may enjoy exploring an endlessly useful utility called the PDF
toolkit, or pdftk for short.  This tool will allow you to mix and match PDFs, combine
pages from different documents, remove pages, encrypt/decrypt, add watermarks, fill out
forms, and so on.


Installing pdftk “server” (command line PDF tool)





	OS

	Installation method





	Windows

	choco install pdftk



	Linux

	apt install pdftk



	macOS

	Go to official download page[URL08] and get Mac version






To try it out, let’s add a cover page to a PDF. If you have a cover page called
cover.pdf and another called document.pdf and you’d like to put the cover page on
the document, pdftk can do it with its cat command (short for concatenate, which
means slap together in a certain order):

pdftk A=document.pdf  B=cover.pdf cat B A output book.pdf





In that command we called document.pdf a shorter name, A, and we called the cover
B. Then we invoked the cat command and asked it to first put all of B and then
all of A into a new PDF called book.pdf. You can also make the cover go in as the
second page by specifying  more complex concatenation sequence, like this:

pdftk A=document.pdf  B=cover.pdf cat A1 B A2-end output book.pdf





Want to require viewers to type a password of j4j2jxk4 before they can read a PDF?
That’s just:

pdftk book.pdf output book-encrypted.pdf user_pw j4j2jxk4





Many more commands and operations are available, and you can read all about them in the
pdftk manual[URL09].


Note

You’ll see a whole world of PDF creation from scratch in Publishing



While we’re looking at PDFs, you may sometimes happen up on a PDF where you can’t
highlight or search through the text. Many tools can remedy the situation by scanning over
the file, recognizing characters, and embedding the text into the file. My favorite
utility for doing this Optical Character Recognition (OCR) is OCRmyPDF[URL10], which is a simple and powerful
interface riding on top of some cutting edge OCR libraries.


Installing ocrmypdf (command line PDF OCR tool)





	OS

	Installation method





	Windows

	A see instructions online[URL11]



	Linux

	apt install ocrmypdf



	macOS

	brew install ocrmypdf






To use, just run:

ocrmypdf input.pdf output.pdf





The output.pdf file generated will have a OCR layer and be in the PDF/A format. I use
this all the time.



Ultimate find and replace (regular expressions)

Brace yourself, you’re about to learn about regular expressions (REs), perhaps the most
powerful but poorly-named superpower yet. REs are expressive ways to describe a
pattern that you want to find and/or change. They are famous both for looking very opaque and for
saving thousands upon thousands of hours of painfully tedious work while causing rapid
promotions. There’s even a webcomic[URL12] about REs being a
superpower.

Imagine you have a thousand phone numbers formatted like so:

(509) 123-4567





But your boss is trying to be more international and has asked you to convert them all to
the format:

+15091234567





You could go through one by one and do them, but that’d be tedious, inefficient,
and frustrating. Worse, what if you had ten thousand to modify? You can’t use regular-old
find and replace for this because each phone number is slightly different. This is exactly
the kind of thing regular expression are made to handle!

REs have special symbols to match different classes of characters. For instance, \d represents any single
number. So the following regular expression matches all phone numbers in the format above:

\(\d\d\d\) \d\d\d-\d\d\d\d





We used \( and \) on the parentheses because parentheses without backslashes are
used to group things. We can use the + shortcut which means “match one or more” to
write the same RE as:

\(\d+) \d+-\d+,





which will still match the phone numbers, and would also match patterns that have 20-digit
long area codes (if that were a thing for some reason). See? They look scary but aren’t
that bad!

Here are some RE identifiers and their interpretations:


A small subsection of RE identifiers





	Character

	Interpretation





	\d

	Any digit (0-9)



	\s

	Any whitespace (space, tab, etc.)



	\S

	Any non-whitespace (letters, numbers, punctuation)



	+

	One or more of previous pattern



	*

	Zero or more of previous pattern



	\w

	Any alphanumeric character, or underscore



	.

	Any single character of any kind



	(...)

	Define a new group matching whatever pattern is inside






If you want to match an actual plus sign or an actual parenthesis, you have to precede it
with a backslash, like \+. This gets tricky because you can have expressions with both
+ and \+ which mean totally different things (one or more vs. actual +).

Now for the superpower of RE find/replace. Let’s define 3 groups, one for the area code,
one for the prefix, and another for the number by using parentheses:

\((\d+)\) (\d+)-(\d+)





All we did was put non-backslashed parentheses around each group of numbers. In doing this
we defined three groups:  Group 1, Group 2, and Group 3. Group 1 is the area code, Group 2
is the prefix, and Group 3 is the last four numbers.

When we’re telling a RE find/replace system what to replace our matches with, we can refer
to those groups by number using \1 for Group 1, \2 for Group 2, and so on. This allows
us to mix and match the groups and even change their order.

For our example, we want to replace each match with +1, followed by the area code
(\1), then immediately the prefix (\2) and then the rest (\3) so our replace
pattern looks like this:

+1\1\2\3





Note that we used non-backslashed + because in the replace pattern, we don’t have to worry
about the special meaning; that only matters in the match pattern.

There are lots of programs that can perform RE find/replacements for us. One simple option
is to use Perl, which is available in your package managers [5]. Yes, it’s an entire
programming language, but it’s pretty small, and we’re only going to use one tiny feature
of it. To install, use one of these:


Installing Perl





	OS

	Installation method





	Windows

	choco install strawberryperl



	Linux

	apt install perl



	macOS

	brew install perl






The syntax we need to have perl swap one pattern for another is weird looking, but
straightforward. It starts with the program name (perl) then some options -pe
which tell it to run an in-line program and print the output, then the s/ command (for
substitute), then the MATCH PATTERN, then a / separator, then the REPLACEMENT
PATTERN, then a / to close out the replacement pattern, then a g for global (meaning
change all occurrences on a line, not just the first), and then finally the filename
to operate upon.  So it’s going to substitute the match with the replacement on each line
and print the results. Explicitly:

perl -pe 's/MATCH PATTERN/REPLACEMENT PATTERN/g' filename





Let’s try it out. Make a file called input.txt in a folder
somewhere:

(509) 123-4567
(123) 555-4567
(000) 509-1234
(555) 551-0000





Now run this command in your command line (filling in MATCH PATTERN and REPLACEMENT
PATTERN from above):

perl -pe 's/\((\d+)\) (\d+)-(\d+)/+1\1\2\3/g' input.txt





This should produce the following output:

+15091234567
+11235554567
+10005091234
+15555510000





Wow! To further illustrate, let’s leave the match pattern the same and make a more complex
replacement pattern, changing the order of the groups and everything:

perl -pe 's/\((\d+)\) (\d+)-(\d+)/Prefix: \2 Num: \3 Area: \1/g' input.txt





This gives:

Prefix: 123 Num: 4567 Area: 509
Prefix: 555 Num: 4567 Area: 123
Prefix: 509 Num: 1234 Area: 000
Prefix: 551 Num: 0000 Area: 555






Tip

If you want to create a new file with that output, redirect it to a file by
adding the following to the end of the command:

> output.txt





This is a fairly universal way to save command line output
as a file rather than printing it on the screen.

Or even better, if you want to find and replace inside the file itself, use the
in-place option of perl with perl -i -pe followed by the rest of the replacement
command.



Let’s do one more example with something other than just numbers. Imagine your input
looks as follows:

Dr. Michelle Obama
Dr. Newt Gingrich
Dr. Peter Pan
Dr. Jane Eyre
Dr. Winston Churchill
Dr. Herodotus Johnson





Further imagine that we want to get rid of the Dr., add Mc to their last name,  and add
M.D., Ph.D. at the end. The grouped match pattern would be:

(Dr\.) (\w+) (\w+)





The replacement would be:

\2 Mc\3, M.D. Ph.D.





Notice that we never referred to Group 1 in the replacement, so the Dr. will be dropped
entirely. See if you can figure out the command required to get this output:

Michelle McObama, M.D. Ph.D.
Newt McGingrich, M.D. Ph.D.
Peter McPan, M.D. Ph.D.
Jane McEyre, M.D. Ph.D.
Winston McChurchill, M.D. Ph.D.
Herodotus McJohnson, M.D. Ph.D.





Now that’s a superpower!

If you prefer to not use the command line for this, things like Notepad++ can do these
kinds of operations with graphics. Even MS Word has some RE capabilities these days. Check
out RegExOne[URL13] for a great resource to interactively learn more RE syntax.


Tip

Useful related searches to explore:


	regex find replace **program name**


	regular expression to match e-mail address








Encrypted communications

We talked about how to keep the bits on your hard drive safe in File Encryption and
how to browse the web with encryption in The Onion Router and the dark web, so now let’s talk about how to
securely communicate directly with our friends and business associates over networks.


Encrypted text messaging, photos, and voice

For text messaging and encrypted voice calling over the internet, there’s really no good
reason to not use Open Whisper System’s Signal[URL14] app on your phone and computer. This is an
open-source, user-friendly app (with a Desktop version) that does it all without any
complications. The encrypted voice sound quality is far superior to normal, and the messaging is
very straightforward. If that doesn’t convince you, it was made by a dreadlocked anarchist hacker
sailor named Moxie Marlinspike and is funded through privacy-oriented donations to its foundation.
There is no profit motive to this organization to snoop on you or build a profile of you.
Also, Edward Snowden uses it. Go to https://signal.org/download/ to get it on any phone or
computer. I like having it on my computer for longer text conversations because I can type
faster there.



How to send, receive, and verify info securely over the public internet

We’ve all needed to send some confidential document to our associate in Ecuador, but we
often don’t trust anyone between here and there.  How do we do it? Basic e-mail is a no-go
because e-mails bounce around from server to server between users and can easily be
intercepted. If we had arranged a shared password in advance, we could have used it to
hide the document, at least once, but we didn’t (though Signal could help with this).

Your computer has the ability to use an incredible technology called public-key
cryptography to solve this problem. It’s useful in everyday business between
contractors, suppliers, employees, friends, and lovers.

Each individual in an asymmetric cryptography system needs two mathematically-related
digital keys (actually they’re just large numbers) that can be used to encrypt,
decrypt, and sign messages. One will be held secret, and is called the private key. The
other is called the public key, and is widely distributed in the open to everyone we want
to be able to send secure messages to use or verify that we sent messages they receive from
us. Together, they’re called a key pair.

The details behind this math have a fairly straightforward analogy. If you think of a
lock on a box, the public key turns the lock one way, and the private key turns it the
other way. So if my colleague puts a document in the box and locks it with my public key,
the only possible way anyone can get the document back out is to have my private key, and
the only one who has it is me.

As it turns out, we all have immediate and full access to this wonderful and powerful
technology. An open-source implementation has emerged as the GNU Privacy Guard[URL15] (GnuPG).
Its most commonly-cited inadequacy is “Poor understanding by the public”. The situation is
such that people in regulated industries are buying super-expensive secure portals to
transfer e-mails and files between business partners. All for want of a good user
interface. No longer! [4]

Let’s drop down into the command line and see how easy it really is to send someone a truly secret
message. There are GUI tools for this too, but the command line is fun, powerful, and easy.

First, install GnuPG:


Installing the gnupg encryption tool





	OS

	Installation method





	Windows

	choco install gpg4win (includes GUI) or just choco install gnupg-modern



	Linux

	apt install gnupg



	macOS

	brew install gnupg






Now we can do some cryptography.


Generating your own private/public key pair

Run the following command to generate a cryptographic key pair:

gpg --gen-key





You will encounter a series of prompts that you should fill in with your name and e-mail
address. When it prompts you with Change (N)ame, (E)mail, or (O)kay/(Q)uit?, choose
O if all looks good and press Enter. Now it will ask for a password that you’ll
need to type every time you access your Private key. If all goes well, there will be a
short delay while it generates good random numbers, and you should see text along these
lines:

gpg: key 999B22A1FD07D5CD marked as ultimately trusted
gpg: revocation certificate stored as '/home/nick/1FD07D5CD.rev'
public and secret key created and signed.

pub   rsa3072 2018-12-26 [SC] [expires: 2020-12-25]
      7C32B1F5C7124D4D5607EC04999B22A1FD07D5CD
uid    Nicholas William Touran <encryption-demo@digitalsuperpowers.com>
sub   rsa3072 2018-12-26 [E] [expires: 2020-12-25]





You’re doing some pretty fancy computer work now!



Encrypting a file

Make or choose a file to try encrypting. I’ll make a little text file called
secret.txt:

all my secrets are in this file.
Secret 1
Secret 2





To encrypt it, run the encryption command with the armor option (to put it in a nice
format) and the recipient option (-r), filling in your e-mail address followed by
the file name we wish to encrypt:

gpg --encrypt --armor -r encryption-demo@digitalsuperpowers.com secret.txt






Note

As is typical on the command line, you can type gpg --help to see a list of
available commands and short descriptions.



In the same folder, you’ll now see a file called secret.txt.asc which will look
something like this:


[image: A block of scrambled characters]

A very strongly encrypted message that really beats the heck out of Pig Latin.



If you encrypted that with one of your friend’s or co-worker’s public keys, you would not
be able to decrypt it; only they could (that’s why public-key encryption is also called
asymmetric). But in this case, you sent it to yourself so you should be able to decrypt
it with your private key.



Decrypting a file encrypted against your public key

You can decrypt any file encrypted against your public key with your private key. If in the
previous step you entered your own e-mail as the recipient then you can try this out:

gpg --decrypt secret.txt.asc





It will prompt you for the password you made while generating your key pair. If you enter
it correctly, you will see something like:

gpg: encrypted with 3072-bit RSA key, ID 477C7591734F478E, created 2018-12-26
      "Nicholas William Touran <encryption-demo@digitalsuperpowers.com>"
all my secrets are in this file.
Secret 1
Secret 2





It’s working! If you want to make a decrypted file rather than just printing to the screen
(useful for any non-text file like a zip or pdf), just add the -o output_name
option right after the --decrypt flag.



Exchanging public keys with friends

For this to be useful we have to make sure our friends know our public keys so they can
encrypt stuff to us, and vice-versa. To write your public key to a file, run (with your
e-mail, not mine):

gpg --export --armor -o myname-publickey.asc encryption-demo@digitalsuperpowers.com





Now e-mail the myname-publickey.asc to your friends. When you receive a key from a
friend called friendsname-publickey.asc you can import it into your system by
running:

gpg --import friendsname-publickey.asc





Easy! Once you have your public key, spread it widely. You can even put it on your
Facebook profile in the Contact Information section.


Exercise

Convince a friend also generate a key pair and have them send you their
public key (e-mail is reasonable to start). Import their key and encrypt a message to
them. See if they can receive it. Have them send you one back.




Warning

You have to make sure your friend’s public key is the one you got. Check the
fingerprint that’s printed out upon import and verify it over another channel (like
Signal!) or in person. Once you trust that the public key you got is indeed from
your friend, the rest of the system should be rock solid. Don’t forget to keep your private key
private too.





Signing information with our keys

This technology also enables the incredible operation of electronically signing
documents such that anyone with your public key can verify that you signed it and that it
hasn’t been modified since. This is much more powerful than just slapping a scan of your
physical signature on the bottom of a document; that’s easy to forge by everyone who works
at a restaurant where you signed the receipt before, and offers almost no protection
against people modifying the document after you signed it.

The one-way key analogy from above works here too, as long as you can imagine that the
locked box has two locked positions and one unlocked position between them (i.e. it’s
locked in the 9 o’clock and 3 o’clock positions, but unlocked in the 12 o’clock position).
To sign a document, I’d put it in the box and then lock it to the 3 o’clock position with
my private key (which can only turn the lock clockwise). Anyone and everyone with my
public key can open it, thus proving that it was indeed I who put the document in the box.

Let’s try signing a document. Make a new document and call it declaration.txt:

I hereby declare that Little Johnny is sick
with fever and needs the day off. The fact
that there's a spelling test today is merely a
coincidence.





Sign it with the following command:

gpg --detach-sign --armor declaration.txt





You will have to type your password to unlock your private key. If you have more than one private
key, you can choose one with the -u encryption-demo@digitalsuperpowers.com command (with your
e-mail address, of course). Now you’ll find a file called declaration.txt.asc alongside the
original file. This is the signature! Send it along with the file to your contacts or associates, or
post it online. Given the file, the signature, and your public key, anyone (including yourself) can
verify the signature on the receiving end. Here’s how:

gpg --verify declaration.txt.asc





You should see a message indicating success that looks like:

gpg: assuming signed data in 'declaration.txt'
gpg: Signature made Fri 11 Jan 2019 06:42:32 PM EST
gpg:                using RSA key 7C32B1F5C7124D4D5607EC04999B22A1FD07D5CD
gpg:                issuer "encryption-demo@digitalsuperpowers.com"
gpg: Good signature from "Nicholas William Touran <encryption-demo@digitalsuperpowers.com>" [ultimate]






Exercise

Try modifying the declaration.txt after signing it and see what the verification step does.





Encrypting with GUIs

Admittedly, not everything is best in the command line. There are ways to integrate this
into e-mail. For instance, the e-mail client, Thunderbird[URL16], works great with any kind of e-mail account and
has built-in support of GPG encryption. Since most people are using web-based mail, it’s
also worth highlighting FlowCrypt[URL17], which is a Chrome extension
that puts these features on top of a Gmail account. Some people electronically sign all
their outgoing e-mail for good measure automatically with these tools.

For drag-and-drop file encryption/decryption that you can then e-mail around without any
special extension, Windows users can look at the GUIs that come with Gpg4win, and other OS
users will find similar tools for their system with brief web searches.


Note

Estonia actually went all-in on this kind of thing and put cryptographic key
pairs on their national IDs. They had a hiccup in that the system used to generate the
keys was weak and then it was hard to replace them, but I think they’re absolutely on the
right track. This kind of thing can make our lives more efficient and secure in many ways.
Our social security numbers are significantly weaker than those Estonian keys. If people
learn about these capabilities and realize that they can use them right away on their
computers, I hope we can improve process efficiencies and security. Data is important and
it’s important for us to become more comfortable with encryption.







Making flowcharts

Flowcharts come in handy for communicating process as well as mind-mapping complex
situations. Three open-source tools capable of making good flowcharts are Graphviz[URL18], MermaidJS[URL19], and dia[URL20]. Graphviz and Mermaid are unique in that the nodes
and connections are expressed in text, and the system generates the actual flowchart. This
is favorable when you aren’t interested in the precise layout of the flowchart (it’s
determined algorithmically). It can be useful for making charts by hand, but especially
shines for data manipulators who need to generate flowcharts dynamically, based on some
data set or user interaction.

Here is what a graphviz flowchart looks like:


[image: digraph fig {   // First we'll define a few nodes    Start [shape=circle,style=filled,color=green];  // single node   node [shape=box]; graphviz, dia, Profit;        // node list   decision [shape=diamond,style=filled,color=lightgrey, label="Point and\n click?"];    // Then we define the connections   Start -> decision;   decision -> dia [label="Yes"];   decision -> graphviz [label="No"];   {dia, graphviz} -> Profit; }]


Choosing a flowchart



The source to make that flowchart is:

digraph fig {
  // First we'll define a few nodes 
  Start [shape=circle,style=filled,color=green];  // single node
  node [shape=box]; graphviz, dia, Profit;        // node list
  decision [shape=diamond,style=filled,color=lightgrey, label="Point and\n click?"];

  // Then we define the connections
  Start -> decision;
  decision -> dia [label="Yes"];
  decision -> graphviz [label="No"];
  {dia, graphviz} -> Profit;
}





To do such a thing, you first install graphviz:


Installing the graphviz tool





	OS

	Installation method





	Windows

	choco install graphviz



	Linux

	apt install graphviz



	macOS

	brew install graphviz






and then build the flowchart with a command like this:

dot -Tpng flowchart.dot > flowchart.png





(Hey! There’s that output redirection that we saw earlier. Don’t forget it or else you’ll
see what a text representation of a binary png image file looks like.)

The downside is that it’s hard to get the flowchart looking just how you want it.
That’s where dia comes in, allowing you to just draw out your own in detail.
If you do want to use declarative text to create flowcharts with precise layouts, the more
advanced library that can do this is called Tikz[URL21].



The GNU utilities

An exceedingly useful set of small, free utilities is often packaged together as The GNU
utilities. A few of them are obscure but absolutely worth trying out.


Installing the GNU utilities. Many, but not all, of these are pre-installed on Linux/macOS.
Here, we show an example of installing one that isn’t pre-installed.
Others are similar. On Windows, the installation can take 10 minutes.





	OS

	Installation method





	Windows

	choco install gnuwin (a bit outdated but will work, I also had to press
Spacebar when this installation hung…)



	Linux

	apt install units



	macOS

	brew install gnu-units







Unit conversion

Perhaps my favorite utility here is units, which converts units from one system to
another. It can be run interactively or with one-offs. Let’s show it interactively first.
Type units and press Enter. Type 10 cups at the prompt and press Enter.
Then type tablespoons and press Enter again. Behold! It tells you that there are
160 tablespoons in 10 cups:

You have: 10 cups
You want: tablespoons
    * 160
    / 0.00625
You have:





That’s not even getting started. Press Control-C to quit. Now let’s try it in
one-liner mode. You just say units "what you have" what you want. For the previous
example, that’d be:

units "10 cups" tablespoons





This thing has over 3000 units in it. Here are some more to try:


	units "2 dozen feet" meters gives 7.3152


	units "2 bakersdozen feet" meters gives 7.9248


	units "2 dozen bakersdozen feet" meters gives 95.0976


	units "1.7 meters" "feet;in" gives 5 feet + 6.9291339 in (Woah! It split those
out!)


	units "tempC(32)" tempF gives 89.6 [1]


	units "1 googol femtobarns" "teraparsecs^2" gives, astoundingly, 1.050265  (that’s
an obscure nuclear unit of area converted to square astronomical units of distance made
famous by the Millennium Falcon’s Kessel Run)




Read more about it at https://www.gnu.org/software/units/



Pattern matching with grep

The grep utility gets a regular expression and then prints it.
This is endlessly useful when dealing with large datasets, especially when chained
together with other utilities. For the next few examples let’s assume we’re maintaining a
website for our company and it involves a deeply nested folder structure with thousands
upon thousands of text files in it (HTML, CSS, etc.). At the bottom of each page is a
footer that says something like Copyright © 2025 My Company, LLC. Say we want to just
find and print all of those for any year. We can use grep with the -R(ecursive)
and -P(erl mode) options to do this:

$ grep -RP 'Copyright © \d\d\d\d My Company' *.html





And you’ll see:

Copyright © 2025 My Company, LLC
Copyright © 2025 My Company, LLC
Copyright © 2024 My Company, LLC
Copyright © 2023 My Company, LLC
...







Extracting a column with awk

The last command printed out every line. But what if we only want to grab the year out
of that because we’re going to put it in a spreadsheet and do something with it. The
awk tool can be chained to grep to process each line that grep prints. There’s
a whole world of awk commands, but one to know is the print command, which can
print the first, second, third, or nth column in an output stream. In the example above,
the year is the third column (space-delimited) so we would use this (| can be typed
with Shift - \):

$ grep -RP 'Copyright' *.html | awk '{ print $3 }'





Giving:

2025
2025
2024
2023






Tip

Throw a | clip on the end of that last command and the results will be in
your system clipboard. Now you can paste into another program, like a spreadsheet.





Multi-file find/replace

You’ve seen how we can find matches in multiple files and even down-select things in the
lines we want to see. Earlier, you saw how to do RE find/replace with perl. For the
grand slam, we need to find and replace in all those files.  In our example, we will
update all © years to 2026. Here’s the command if all the files were in one directory:

perl -i -pe 's/Copyright © \d\d\d\d/Copyright © 2026/g' *.html





When files are in multiple directories, we can chain commands together. First, we’ll find
all the files we want to cover in all directories, then we’ll send each one to the above
perl command to do the actual in-place modifications. In the command-line philosophy
alluded to in The command line, having small tools that can be chained
together is the best way to provide power, simplicity/maintainability, and flexibility.
Here, we will use the find command to find all files recursively that match a pattern,
then we’ll use the xargs command to translate that list of files into input for the
perl find/replace command.

We need the names of all the files in our scope. In this example, it’s any .html
file in this or any child folders. To list those, we can use the GNU find command:

find . -iregex '.+\.html'





Try it out and you’ll see all html files in a folder (put some there if you need to build
this example up). That command is looking in the current folder (called .) for any
files matching the regular expression listed, which, as you learned above, is anything
ending in .html.


Warning

On Windows, a built-in find command will conflict with
the GNU one we are using here, so you may have to type the full path, like:

C:\GnuWin\bin\find.exe . -iregex '.+\.html'







To pass the results of the find command on to another command, we use xargs as
follows (first we’ll just re-print the file names):

find . -iregex '.+\.html' | xargs echo 'Found files: '





As you can see, all files found have been passed as one long chain of arguments to the
echo command. Now we can substitute our perl command in and let the magic
happen:

find . -iregex ".+\.html" | xargs perl -i -pe "s/Copyright © \d\d\d\d/Copyright © 2026/g"





Behold: You now have the multi-file, multi-directory, regular-expression find and replace
superpower! Remember, with great power comes great responsibility. Consider testing out a
sweeping command like this (here by leaving out the -i in-place argument) before
actually changing all the files.

Footnotes



[1]
This special syntax is to differentiate absolute temperatures from the
different sizes of the temperature units.



[2]
That’s an Aladdin reference…



[3]
Not too surprisingly; many software companies have a profit motive to push
you into their more expensive software tools.



[4]
Granted, some commercial secure portals offer features that plain GnuPG may not
have, such as a master key for an IT administrator to unlock secret messages if an employee is fired or
forgets their password, which is sometimes a business requirement.



[5]
Arguably, sed is the simplest program to do line-by-line RE find/replace.
However, it uses a more basic (and in my opinion uglier) RE format instead of the
Perl-style REs.



[URL01]
https://mynoise.net/



[URL02]
https://obsidian.md/



[URL03]
https://logseq.com/



[URL04]
https://roamresearch.com/



[URL05]
https://notepad-plus-plus.org/



[URL06]
https://www.sublimetext.com



[URL07]
https://pragprog.com/titles/dnvim2/practical-vim-second-edition/



[URL08]
https://www.pdflabs.com/tools/pdftk-server/



[URL09]
https://www.pdflabs.com/docs/pdftk-man-page/



[URL10]
https://ocrmypdf.readthedocs.io/en/latest/index.html



[URL11]
https://ocrmypdf.readthedocs.io/en/latest/installation.html#installing-on-windows



[URL12]
https://www.xkcd.com/208/



[URL13]
https://regexone.com/



[URL14]
https://www.signal.org/



[URL15]
https://gnupg.org/



[URL16]
https://www.thunderbird.net/en-US/



[URL17]
https://flowcrypt.com/



[URL18]
http://graphviz.org/



[URL19]
https://mermaid.js.org/intro/



[URL20]
http://dia-installer.de/



[URL21]
http://www.texample.net/tikz/








            

          

      

      

    

  

    
      
          
            
  
Art Studio

Computers are integral to the workflows of photographers, cartoonists, videographers,
graphics designers, musicians, podcasters, and many other artists. They’re also a primary
medium through which art is experienced by patrons. In this chapter, we’ll explore
some superpowers related to art and other creative activities. Even if you’re not an artist,
you’ll find uses of these powers in your work, home, and hobbies.


Basic image manipulation

You will often want to crop an image, rotate it, add some text, touch it up slightly, or
make significant modifications. Adobe Photoshop has held the crown for
professionals in this regard for many years. One high-quality and open-source
program that also excels in doing these things is GIMP[URL01]. We will go
through a few basic examples of how to use it here.


Installing GIMP





	OS

	Installation method





	Windows

	choco install gimp



	Linux

	apt install gimp



	macOS

	brew install --cask gimp






Once you open an image in GIMP, you will find many options, including these useful and basic
ones:


	Image → Scale Image → Change image size by pixels or percentage


	Image → Transform → Rotate → Rotate or flip image




The toolbar on the left has lots of tools for cropping and selecting while the tools on
the right deal with layers.


The clone stamp tool

The clone stamp tool is a wonderful superpower. This tool effectively lets
you erase things from images, or duplicate things. You have to try it to believe it.

Here’s a photo of a classic watch. On the left is the original, and on the right is a
version that has been clone stamped a lot.


[image: Side-by-side comparison of Casio watch before and after clone stamping]

The photo on the left is the original, and the one on the right has been clone
stamped.



Is it magic? Nope! It just allows you to clone parts of the image onto another location.
So it didn’t see under the digits; that’s impossible. Instead, the space between digits
was carefully cloned over the digits. Less obviously (and more usefully), the smudge over
the CASIO logo has been removed, and some scratches were removed on the band just below
the face. Here’s how to do it in GIMP.


	Load up your first image and choose the clone stamp tool (hover your mouse over all
the tools in the toolbar until you find it; it kind of looks like a stamp). Your cursor will now be a
dotted circle. Adjust the size by changing the Size slider in the left-hand toolbar.


	Find the area you want to clone from and put the mouse over it. Press and hold the
Ctrl key (it may be Command in macOS) and click once with the left mouse button to
mark the clone-from area. In my example above, this was the empty space between digits.


	Zoom in as much as you need (try Ctrl with Mouse Wheel)


	Now move the mouse to where you want to clone to. Click with the left mouse button and
paint over it carefully. You will see an indicator in the clone-from area moving in
sync with your cursor. If/when you mess up, press Control-Z to undo.


	Adjust the clone-from area a few times to make it look extra realistic (by repeating
the second step).





Exercise

Try the clone stamp tool out on one of your photos. See if you can add
or remove someone from a family portrait, or do something else fun. Note that you can
load two photos at once and clone from one to the other.




Note

Speaking of panoramics, the hugin tool is a very powerful panoramic stitcher. Yes,
cell-phones often have this built it these days, but the feature is still pretty
useful in certain cases, and gives you as much or as little control as you’d like.





Image manipulations from the terminal

Editing images from the command line may sound odd, but its utility comes up surprisingly
often.  You can modify images dynamically as part of a bigger system (like an interactive
website that applies filters to images that people upload, for instance, hint hint), do
something complex without a bunch of clicks, and apply the same modification to a whole
set of images.

For example, if you set your camera out all night with an intervalometer and star-tracking
camera mount to capture a new astrophotography time-lapse (or any other kind of
time-lapse), you may want to crop them all the same, add some text, put a border around
them, etc. Or maybe you have a bunch of still images from a simulation and you want to
make them into a movie but need to shrink them all down first. A delightfully powerful
suite of tools called ImageMagick[URL02] can do all sorts
of things like this.


Installing ImageMagick





	OS

	Installation method





	Windows

	choco install imagemagick



	Linux

	apt install imagemagick



	macOS

	brew install imagemagick






The simplest thing it’s good at is converting image formats. To convert a JPG to a
PNG, just run:

convert picture.jpg picture.png





You can convert them to pdf or bmp or many other things. If you have a bunch of
files, use mogrify instead of convert:

mogrify -format png *.jpg





What if you want to make a bunch of thumbnails for all the JPGs in a folder, while
rotating them 45° and making them black-and-white? We got you:

mkdir thumbnail
mogrify -path thumbnail -thumbnail 100x100 -rotate 45 -colorspace Gray *.jpg





Imagine having to do that on 100 images, or 1000, by hand!

Another fun one is the montage command (also part of ImageMagick). You give it some
images and it slaps them together in a montage of whatever shape and size you want. I had
some nice pictures of the August 2017 Eclipse, and made a montage with each
individual square being reduced to 960x960 pixels and with 10-pixel margins in each
direction with this:

montage IMG*.jpg -geometry 960x960+10+10 eclipse.jpg





Which resulted in this:


[image: Four pictures of difference phases of an eclipse in a four by four grid]

A beautiful Eclipse montage from Malheur National Forest, OR. By the way, I highly
recommend seeing a total eclipse someday if you get the chance.



You can add the -tile 4x1 option for a row montage and boost the margins a bit:

montage IMG*.jpg -geometry 960x960+20+20 -tile 4x1 eclipse-row.jpg






[image: Pictures of eclipse in a four by one row]

The same eclipse photos but montaged as a row.




Exercise

Try it yourself with some images of your own but stack them vertically like
a photo booth.



Sure you could do that kind of thing by clicking and dragging and perfecting this and
that, but that’d take a really long time. This command line option is nearly instantaneous
and can be repeated trivially on different images.

This utility is also excellent for adding Copyright © messages to images in bulk.

See hundreds of more examples at the Usage manual[URL03].
Another must-see resource on this topic is Fred’s ImageMagick Scripts[URL04], which has hundreds of examples of
kind of crazy and amazing things you can do with this tool. It’s not the prettiest
presentation, nor the most discoverable, but if you click through some of those you’ll get
a real taste of what this can do. The wheels of creation in your head are going to almost
red-line.




Computer graphics

Making graphics from scratch on a computer for fun and profit is another computer
superpower. You can design your own logo, make signs for your neighbors, make diagrams for
your research or web page, make your own comic strip, draw, trace, animate, and so on.
It’s a whole wonderful world. This is another one of those areas where full
4-year+ college programs exist to teach people how to do it well. But that doesn’t
mean you can’t get started right away. I’ve used these tools in many technical
publications as well as for public communications.


Vector graphics

Fundamentally, images can be represented on a computer in two ways:


	Bitmaps
	Bitmaps are images made of an explicit list of which colored pixel is at each location
in a grid.  These are ideal for complex images and photographs.  If you zoom too far
in, they become pixelated and blurry. File types include BMP, JPG, TIFF,
PNG, etc.



	Vector images
	Vector images are made up of mathematical descriptions of shapes, such as “line from
(x1,y1) to (x2,y2)”. These require fewer bits for simple line-art graphics, and you
can zoom in on them infinitely without losing any sharpness. Files types include
svg, pdf, and others.






Note

Different bitmap formats have pros and cons too. JPG uses lossy compression
and can give small file sizes, but you have to be careful as the quality can degrade
significantly. PNG uses lossless compression, so quality remains high, but file sizes
can be larger.



GIMP deals with bitmaps. Other programs, such as Adobe Illustrator and Inkscape[URL05]
(open-source) deal with vector graphics. Inkscape is absolutely essential, so
let’s get it.


Installing Inkscape





	OS

	Installation method





	Windows

	choco install inkscape



	Linux

	apt install inkscape



	macOS

	brew install inkscape






Here is a vector graphic made in Inkscape using the Rectangle tool, the Pen tool, and the Circle
tool:


[image: A line-art icon of a cooling tower]

An icon of a nuclear reactor



Let’s make a cool sailboat logo with it.



Step 1: Making a sail


	After opening Inkscape, hover the mouse over the icons along the left panel until the
tooltip tells you that you’ve reached the Draw Bézier curves and straight lines tool.
Click it.


	On the canvas, click once somewhere in the middle to start (we’re drawing a sail/triangle)


	While holding Control but no mouse buttons, move the mouse to the right a bit and
click again. Holding the key constrains you to a perfectly horizontal line.


	Now move up and to the left until you’re over the first point. Click once again. If you hold
Control here it will constrain you to one of a few particular angles.


	Now go back to the starting point of this curve. It will turn into a red square
(indicating that clicking will close and terminate the path). This time, click and hold
the mouse button. While holding it, drag down and slightly to the right. This will make
the previous line a bit curved, like a sail. Let go when you’re happy with it.




It should look like this:


[image: A simple triangular sail]

My sail





Step 2: More detail


	Repeat the sail process but draw a boat structure under it (be creative)


	Click the sail (you have to hit one of the lines because the inside is currently empty). Now
click one of the colors from the bottom (it scrolls) to color it how you like.


	Do the same with the boat.


	Click the Text tool on the left (big letter A) and draw a text box with it
under the sailboat. Write “SAIL LIFE” or something else in it.


	Click the circle tool and click/drag to make a circle around the boat. Hold
Control to constrain it to a perfect circle.


	If it’s solid, click the X in the far left of the color bar to make it clear/empty.


	Find the Fill and Stroke dialog (on the right-hand side). It has three
tabs in it: Fill, Stroke paint, and Stroke style. In the Stroke style
tab, increase the Width. You’ll see the circle getting larger.


	Choose a stroke color from the Stroke paint section to color it, (or
Shift-Click a color in the color selector at the bottom of the screen).


	Save it as an SVG (native vector format).


	Export it as a png by going to the Export PNG Image option (on the right),
choosing a file name in the Export As field and then pressing Export.





[image: The sail logo completed in the Inkscape interface]

My sailboat logo in Inkscape



This just barely scratches the surface of this tool and others like it, so explore around
and, as usual, check out more serious tutorials for the real magic if this strikes your
interest. I suggest looking into the bitmap tracing capability for your next superpower
(it converts bitmap graphics into vector graphics).

Another serious open-source graphics tool out there is Krita[URL06], known mostly for concept art,
illustrations, and comics. A lot of people use digital pen hardware with this program like
a Wacom tablet.

For current or aspiring cartoonists, a truly professional tool used by Studio Ghibli and
others called OpenToonz[URL07] was made open-source
in 2016. It has been used in the production of Futurama, Anastasia, and Balto. An older
version is currently available in chocolatey for Windows. There is a snap for
Ubuntu Linux. Mac users can get it directly from the link above.



Color lifehack

One neat way to get a bunch of colors that look borderline good together is to
choose them in the Hue-Saturation-Lightness (HSL) space instead of the more typical
Red-Green-Blue (RGB) space. Pick one color anywhere in HSL and then choose all others by
adjusting the Hue only (keeping saturation and lightness constant). These always end up
looking like they belong together. All graphics programs allow you to choose colors in
HSL these days. Of course, color wheels can also help you figure out complementary
colors.

Here’s what a few boxes made with this trick in Inkscape look like:


[image: A few colored boxes where colors look nice.]

Some nice colors that go together with the same S and L values. (Sorry B&W readers,
this also looks better when viewed in color)



Websites like https://coolors.co/ can do this too.



3-D Modeling with Blender

Blender[URL08] is a 3-D modeling program. It is considered one of the best open-source
programs ever made. With it, you can create objects for 3-D printing, animated characters
for games, and even entire animated scenes with physics modeling such as a swinging
ball-and-chain
smashing into a pile of little boxes that go flying all over the place. You can get it the
usual way:


Installing Blender





	OS

	Installation method





	Windows

	choco install blender



	Linux

	apt install blender



	macOS

	brew install --cask blender






It’s a professional-grade program which could make one’s entire career.  With its
graphical nature, the best way to get started is to watch the Blender Fundamentals[URL09]
YouTube playlist, which at press time has 41 introductory video walkthroughs. Once you get
used to the mouse and keyboard controls and see how to rapidly sculpt the progeny of your
imagination into being, the world will be at your fingertips!

Once a 3-D object is built, the process of rendering it applies textures and lighting to
turn it into a realistic-looking object. The technology of ray-tracing allows renders to
take on a photorealistic quality, but requires serious computation. This method creates
computer simulations of rays (kind of like virtual photons), transporting them
through the scene. As they experience reflection, refraction, and blockage, they get
recorded in a virtual camera looking at the scene [1]. In effect, this allows the
creation of scenes that are indiscernible from real life. One of my favorite examples of
this method was created way back in 2006 using another great tool called POV-Ray (not
Blender). Here it is:


[image: A rendered scene with dice and glasses and lots of reflections]

A ray-traced render of some glasses created by Gilles Tran with POV-Ray 3.6. You can
find the POV-Ray code for this, remove a glass, and then re-render it to convince
yourself that it’s totally computer-generated.





Computer-Aided Design (CAD)

While Blender can be used to design physical objects, it’s more specialized for making visual
scenes intended to be viewed on a screen. The field of Computer-aided Design (CAD) covers programs
that are specialized for making real objects like machine parts, structures, skyscrapers,
sculptures, and so on. Many mechanical and structural engineers live and breathe by a
commercial tool called SolidWorks[URL10]. It
is extremely expensive, but when you’re making a $30M part, it’s worth it. This class of
tool includes sophisticated physics and material modeling so that as you adjust the
shape and composition of your object you can also subject it to various conditions (like wind,
temperature gradients, earthquakes) and make sure it survives or otherwise performs as
required. You can also make sure the part is fabricable with the process you plan to build it with. Welcome to mechanical and civil/structural engineering.

For around the home, studio, and small shop, you can get started learning concepts of
CAD and designing real things with an open-source parametric CAD system called FreeCAD[URL11]. It’s not as sophisticated as the
commercial tools, but it can still do an incredible amount. Many CAD
experts have given it mediocre-to-poor reviews over the years but a growing
excitement surrounds its recent releases and potential. Try it out
right now via your package manager:


Installing FreeCAD





	OS

	Installation method





	Windows

	choco install freecad



	Linux

	apt install freecad



	macOS

	brew install --cask freecad






As with most valuable and powerful skills, CAD is non-trivial to pick up, requiring
dedication to achieve expertise.

Notably, a Building Information Modeling (BIM) Workbench plug-in[URL12] to FreeCAD has been under very active
development and is something to watch for designing buildings more seriously. It could
come in handy for that addition to your home or that new shed you’ve been thinking about.

The wide availability of FreeCAD combined with its scripting and parametric capabilities
(meaning the when you adjust the height of a part, all interrelated parts will update
automatically to fit) make it an intriguing candidate for distributed open-source hardware
and structural projects, should such a thing ever be conceived. I envision a glorious
future full of this kind of collaboration, such as in open-source international power
plant design.

OpenSCAD is another excellent and available CAD tool that could be interesting to compare
and contrast with FreeCAD as you’re starting out. Yet another is SALOME[URL13], which comes out of the French nuclear industry, where
it’s used to make CAD models as well as to interface between many different numerical
physics solvers.

Autodesk’s commercial Fusion 360 has a free license for hobbyists and other
non-professionals. This offers a pathway to learn a powerful commercial tool at low
initial cost.  Philosophically, the availability of this likely and unfortunately pulled
some focus away from the development of the open-source tools.


Note

Speaking of science and engineering, OpenFOAM[URL14] is another
stunning multi-platform open-source system made to perform computational fluid dynamics (CFD)
calculations. If you’ve ever seen those
animations showing high-color super-detailed airflow over an airplane wing or car, that’s
what CFD does. We use CFD all the time in the nuclear industry.






The digital darkroom

In the olden days, photography (”writing with light”) had two artistic phases: going out
into the field and making beautiful compositions on film and then deciding how to expose
and crop them to a print in the darkroom.  Digital photography has been revolutionary, largely
eliminating the darkroom step for most of us.

It’s worth noting, however, that we do have digital darkrooms now in each of our computers,
and the opportunities for artistic expression within are staggering. While anyone can take
beautiful snapshots with their phone, those who are interested can go deeper and unlock
the really fun and rewarding world of digital darkrooming.


The RAW advantage

When you take a digital picture, light comes through a lens and excites a bunch of little electric
light buckets in a grid called a digital sensor. Each light bucket records how bright
either the reds, greens, or blues are in each point on the grid (different colored filters are
overlayed on the grid in a pattern, often as a Bayer filter). The size of the grid determines the
resolution of the image you get, and that is often proportional to sharpness. Thus, more is considered
better.  You’ve heard these measured in megapixels (“millions of picture elements”). A 25-megapixel
image may record one 14-bit number per pixel, so the total size of the file would be:


\[25e6 \times 14 \text{ bits} = 43.75 \text{ megabytes}\]

That’s a lot of megabytes (MB). But if you look at the size of a picture from your phone,
it’s closer to 10 MB. BUT HOW? The answer is that the bits from the sensor get sent to a
microprocessor in the camera that compresses them mathematically to smaller sizes using
the JPEG algorithm.  Conceptually, if an image has 500 zeros in a row, the RAW file has
500 repeated numbers whereas a compressed file just has a few bits that say: “500 zeros in
a row”. The compression used is lossy, meaning information is lost when you compress a
RAW image to a JPG. Worse still, JPEG images only have 8-bits of information per pixel
instead of the full 12- or 14-bits your camera collected. More bits means more possible
brightness values for each individual pixel.

To make a long story short, professional photographers shoot in RAW mode to skip this compression
because they will process the image in their computer’s digital darkroom.  When you work in RAW you
can do incredible things, like pull details out of underexposed shadows, change the white balance,
reconstruct overexposed highlights, denoise, and much more. If you didn’t have the exposure settings
quite right on an incredible shot, RAW is very forgiving and will help you get the print just right.

If you want to try
out the digital darkroom, set your camera to save files in RAW format (note that you won’t
be able to store as many on one memory card, but I’m not even worried because you can
still fit a lot of RAW files on a 128 GB card).

Here is an example. First, an image as taken right out of the camera:


[image: The Seattle skyline during sunset]

And the same photo after a bit of time in the digital darkroom:


[image: The Seattle skyline during sunset, but better.]

Look at all that detail that was effectively black in the first one that was brought out!



How to get started in the digital darkroom

Most professional photographers use the proprietary and expensive programs from Adobe
called Lightroom and Photoshop as their digital darkroom. These are considered the best
and do everything you’ll need. Open-source alternatives can get you 98% of the way there,
and you can start with them right now. In particular, darktable[URL15] is an absolutely
phenomenal RAW digital darkroom program that was until recently only available in Linux.
Here’s how to get it:


Installing darktable





	OS

	Installation method





	Windows

	choco install darktable



	Linux

	apt install darktable



	macOS

	brew install --cask darktable






Darktable is a powerful program that takes some orientation to get started with.
Fortunately, well-produced tutorial videos on YouTube will walk you through various
development workflows step by step.  Harry Durgin is my favorite. He talks you through
exactly what he’s doing and why, while crickets chip in the background at his Hawai’i-based studio. His
darktable edit playlist[URL16] at press time has 42 wonderful videos. This is the best way to
see what the various tools are capable of doing.

The basic workflow is roughly as follows:


	Import photos into the light table view and rank them 1-5 by pressing the 1-5 buttons
on your keyboard.


	Choose your favorite and double-click it to enter the dark room view where you’ll edit
a single photo.


	
	Try out a few basic plug-ins to get started, including:
	
	Denoise (profiled) —  This uses data generated by other users who have your same
camera model to remove digital noise, smoothing our your picture, especially in low-light
areas.


	Lens correction —  If your lens is in the database, this applies corrections to geometric
distortions, chromatic aberrations, and vignetting.


	Crop and rotate —  Adjusts the crop of the photo to best tell the desired story.
Remember the rule of thirds and other composition guidelines. Note that
you can right-click/drag in this view and trace along a line that you intend to be either
vertical or horizontal and it will rotate the photo to make it so.


	Tone curve —  Adjusts the exposure to get the lighting just right. You can make the
curve steeper to get more contrast.


	Shadows and highlights —  Brings the brights down and the shadows up, evening out the
exposure a bit.


	Color correction —  Changes the overall colors in the image.


	Levels —  Brings the black point up so the blacks are really black.










	Press the L key to go back to the light table. Now click export selected near
the bottom right to write out the final image as a developed Instagram-ready JPG.


	If desired, open the image in GIMP for final modifications and touch-ups.


	Repeat for however many photos you like.




If you have a few plug-ins you always activate, you can have them automatically turn on.

Darktable comes with some extremely powerful features. One impressive one is parametric
masks, which allow you to apply various operations only to certain sections of the photo
as defined by ranges of brightness or color. You can combine these with drawn masks to
fine-tune the look you want. So if you want to brighten or adjust the reds, but not the
greens, you have full elaborate control of doing so. The artistic flexibility will
give you many new ways to express yourself. You really have to watch some of Harry’s
tutorial videos to see this in action.




Making podcasts, music, and sound effects

There’s this great track on Daft Punk’s Random Access Memories where Italian electronic
dance music pioneer, Giorgio, explains how he got started making music with synthesizers.
At the end of his monologue there’s a perfect pause and then these epic synth arpeggios hit
and it’s just amazing. In Giorgio’s pioneering days, the synthesizers were all analog
circuits, but way back in the 1980s, digital synthesizers became widespread. Today your own
personal computer can churn out synth beats and sounds like you wouldn’t believe.


The excitement of sound

In about 1992 Sound Cards were an exciting accessory you could add to home computers. I
vividly remember our family getting a Sound Blaster Pro card and installing it in
our DOS-powered CompuAdd computer. At the time it seemed that the possibilities were
endless. This hardware to synthesize sound came with demo programs including [2]
:


	A talking parrot that would repeat anything you said in the microphone in a high pitch.


	A talking psychiatrist program (Dr. SBAITSO) who would psychoanalyze you in a robot
voice.


	An organ you could play that would auto-accompany you as you pressed buttons.


	A sound recording program where you could pitch-shift, reverse, and otherwise edit
things you said into the microphone.




This was really exciting, fun, and inspiring. Even though computers making sound seems a
bit mundane at first glance, it still can be awesome. Tools and processes have just gotten
better with time. Most people don’t look at their laptop and consider the possibilities as
a sound studio. Maybe you will from now on.



Recording and processing audio samples

Recording and digitizing real sounds through a microphone is fundamental to
audio on computers. So let’s try it out. Audacity[URL17] is a popular and widely-available audio program that can
do this well. Here’s how to get it:


Installing audacity audio software





	OS

	Installation method





	Windows

	choco install audacity



	Linux

	apt install audacity



	macOS

	brew install --cask audacity






Fire it up and press the big red circle Record button and just speak your name. You
should see some audio waveforms showing up. Then press stop. (If you just flatline then
you may have to hunt for your Sound Settings and select your microphone from the input
section; just use a web search if you have trouble). You will see something similar to
this:


[image: Audacity interface]

A screenshot of Audacity with waveform after recording a sample.



Try playing it back (by pressing the green Play button). Now for the fun part.  Select
the whole waveform by clicking/dragging over it. In the menu, select Effect → Reverse.
Play it back again and you’ll hear your name reversed.  Reverse it again to get back to
normal.


Exercise

Now that you have heard your name spoken backwards, try recording yourself mimicking how it sounds
backwards.  Reverse it with the computer to see how you did. This is a decidedly fun party
trick.



It’s fun to try other effects as well, especially the Change Pitch one, creating
laughs for days. As you dig into computer audio you’ll also find ways to do live
processing of what you say in the mic or play with an instrument. Beyond the hilarity of
live pitch-shifting, your computer can be an entire post-recording or live effects system.



Recording for a podcast or radio show

If you want to make a podcast or radio show, Audacity is enough to get you started.
You can chop up the recording, crop out parts you don’t want, and add in
a soundtrack. You can even remove background noise, which has an excellent effect on the
listening quality. To do so you first have to profile the
room tone by taking a recording of just it. Try this:


	Start a new recording in Audacity.


	For the first 10 seconds just sit there in silence, collecting ambient noise.


	Now say something useful (i.e. for your podcast) for at least another 10 seconds.


	In the waveform editor, select the portion that’s just noise.


	Go to Effect → Noise Reduction and click Get Noise Profile.


	Now select the whole recording and go to Effect → Noise Reduction again.


	Click Preview to see how it will do and adjust the sliders if it doesn’t yet meet
your fancy.


	Click OK and behold your noise-free high-quality audio recording. You’ll note that the
waveform image shows much less noise in the gaps between your words.




The Compressor effect is also useful along these lines. It makes the volume more
consistent so your listeners don’t have to constantly futz with the volume level to hear
you.

When you have the recording just right, choose File → Export and save the final
result.

For complex projects with many tracks, a Digital Audio Workstation (DAW) such as
Ardour becomes useful.



Synthesizers and music

There are lots of pieces involved in producing music on computers, so let’s go through a
few:


Components of a computerized music studio

	Component

	Purpose





	Samples

	Bring real-world sound into the computer by recording voices, acoustic instruments,
sound effects, etc.



	Synthesizer

	Generates sound waves digitally based on keyboard (as in piano keyboard) input or
programming



	Drum machine

	Special synthesizer that makes drum beats in loops



	Digital Audio Workstation (DAW)

	Records multiple tracks from synthesizers and/or microphones and allows you to move
them around and modify them with various plug-ins to get them sounding just right.
Often fully integrated with syths, drums, and plugins



	VST Plug-ins

	Add-ons that you can hook to your DAW to modify the sound of an instrument



	VSTi Plug-ins

	Synthesizer instruments that come packaged in the VST standard (making them easy
to plug into any DAW that supports the VST standard)






Professional musicians invariably use professional audio software, and for good reason;
it’s quite polished. Ableton is only a few hundred dollars to get started with and, most
musicians will tell you that it’s hard to compete with.

That said, there’s no harm in trying out the open-source offerings. Starting with
drums, Hydrogen is multi-platform enough that we can all try it out.
It’s not in the Windows or macOS package managers, so download it from here[URL18]. You can just start clicking where you want the
various instruments to hit. Try matching my beat here (I changed the RES from 8 to 16
so I could put in 16th notes):


[image: Hydrogen interface]

Screenshot of a cool drum beat I whipped up in Hydrogen. Try it to hear it.



Press the little play/pause button to hear it. You can build dozens or hundreds of
measures like this and use the grid above to schedule how they evolve with time. For instance, you
can do 4 repeats of an introductory rhythm and then start activating more layers that build upon it.
Fire up Audacity to record and plug in a microphone so you can make your first rap.


Exercise

Record your first rap using Hydrogen and Audacity.



We’ll need to use a synth to put down a melody and bass line.
Software synthesizers can be explored with a computer keyboard or even a mouse, but musicians will
find this inadequate and want an older kind of keyboard: that of a piano. MIDI keyboards are perfect
for this. They have a piano keyboard but don’t make any sound on their own; they’re just a
musical input device for your computer. They often include pressure-sensitive pads you can tap
on for drums or other controls, a bunch of sliders, and dial controls. These can all be tied to
whatever you want in the software synth. For instance, you can hook one of the sliders to something
that changes some quality of the waveform and then control it during recording or a live show. There
are specific MIDI ports on some sound cards, but many modern MIDI keyboards just use USB.

There are not many multi-platform open-source synthesizer systems/DAWs, but LMMS[URL19] has emerged as a high-quality, easy-to-get-started, and powerful
system.


Installing LMMS





	OS

	Installation method





	Windows

	choco install lmms



	Linux

	apt install lmms



	macOS

	brew install --cask lmms






It’s the kind of program that will have you playing the  Mission Impossible theme in
exciting glory within a half hour (it’s in 5/4 time, FYI). The documentation is good, and
this tutorial[URL20] will have
you rocking out. Try it out, it will absolutely bring a smile to your face and get your
creative, expressive wheels turning into overdrive.


[image: LMMS screenshot]

A screenshot from making the Mission Impossible theme in LMMS






DJing a party or show

DJing a good party or show requires a lot of work to set the mood and shift it through
emotional highs and lows all while keeping a coherent, continuous story or pace going. To produce
such a show requires either two turntables that you swap between,
or a laptop. If you go the laptop route, you will find some excellent software tools that can
get you up and MCing in no time.

We’ll highlight the cross-platform open source Mixxx[URL21] program
here. It’s available in your package manager and is designed to help you get started even
if you’ve never DJed before.


Installing Mixxx





	OS

	Installation method





	Windows

	choco install mixxx



	Linux

	apt install mixxx



	macOS

	brew install --cask mixxx






This program will scan your music library and present you with the list of songs. You can
drag one to the player on the left and another to the player on the right. There’s a
left/right cross-fader control in the middle that will let you switch volume from one side
to the other gradually. Here’s the idea:


	Load a song in the left player and drag the cross-fader all the way to the left. Press the play button
under the CUE icon. You should hear it start playing, and the waveform on top will
start moving.


	Try clicking/dragging the moving waveform back and forth jerkily a little (trust me).


	Load up the next song in the right player and drag it to where you want it to start from. If you
want, you can rig this up with dual soundcards so you can preview what you’ll play next in
your headphones while still playing over the main room system (this is why DJs always
are holding up headphones to their ears and bobbing their heads).


	Adjust the tempo if needed, or press SYNC to match the same tempo as the currently
playing song.


	Press the play button on the right to get it rolling (it’s still silent due to the
cross-fader).


	When the time is right, drag the cross-fader right until the song on the right is the
only one heard.


	Repeat this process, but this time going from right to left.


	Do not stop until either the world ends or the sun comes up.




You can do this live or use something like Audacity to record your show in advance if you’re putting
out a mash-up album or whatever.

It looks like this:


[image: A screenshot of a Mixxx session]

A screenshot of Mixxx playing a fairly eclectic show





Movies

The movie industry is large and lucrative. Software is absolutely key
as the green screen has taken over. As such, professional software tools in
all elements of movie production are in fierce competition. All the best tools are
commercial, so if you want to go into professional movie production, you will likely need to
learn tools like Adobe Premiere, DaVinci Resolve, Lightworks, Autodesk Maya, Flowbox,
ZBrush, etc.

That said, a few accessible superpower tools do exist for people outside the movie
production industry.


Format conversion, trimming, and time-lapses

The most universal command-line video tool is called ffmpeg[URL22]. It’s useful for recording, converting, and streaming video
(and audio).


Installing ffmpeg video utility





	OS

	Installation method





	Windows

	choco install ffmpeg



	Linux

	apt install ffmpeg



	macOS

	brew install ffmpeg






ffmpeg can slice and dice videos.
For example, if you have a long video (input.mp4) that you only want a two-minute clip
from (between 12:21 and 14:21, for example), you can use a command along the lines
of:

ffmpeg -ss 00:12:21 -t 00:14:21 -i input.mp4 -acodec copy \
    -vcodec copy -async 1 section.mp4





This will create a new video called section.mp4.


Note

If the video doesn’t end up cutting right, then there probably is no keyframe
at the time you cut it. To get around this you have to re-encode the video by omitting
the acodec and vcodec option, which will take some processing time.



To convert from one video format to another, you specify the video codec (-c:v) and/or
audio codec (-c:a). The commands are like:

ffmpeg -i movie.avi -c:v libx264 -preset ultrafast movie.mp4





ffmpeg can make time-lapse videos from image sequences. This is useful in research
environments (e.g. stitching together stills from a simulation) or in hobby or art spaces
just the same (e.g. combining a year’s worth of security camera stills into a
year-in-review project). The input options to ffmpeg are very versatile, but also
complex and frequently changing. Thus, it’s best to use web searches to find the best
command for what you want to do. For instance, if you search something like ffmpeg
stitch photos into time-lapse you may find something like:

ffmpeg -framerate 9 -pattern_type glob -i 'ice-move/shed-*.jpg' \
       -vcodec libx264 -crf 15 -filter "minterpolate='fps=30':'mi_mode=blend'"\
       -pix_fmt yuv420p ice-move.mp4





This will take all files called shed-[anything].jpg in the ice-move folder and combine
them into a new time-lapse movie called ice-move.mp4. This actually does interpolation
between frames, giving a really smooth-looking time-lapse.

You can even make high-quality animated GIFs for posting on the internet. With ffmpeg,
web searches and StackOverflow are your friends.  All the options are described in
elaborate detail at https://ffmpeg.org/ffmpeg.html.



Video editing

When you’re going to produce a movie from video you shot around town for whatever reason,
you need graphical video editing software to arrange the clips how you want them, to add
smooth transitions (fade, blur, etc.), to add rolling credits at the end, and to insert a
soundtrack.

There really is no universal standard multi-platform video editing software.
Each OS has its favorites.  OpenShot[URL23] is one open source
option available on all platforms that is well-worth trying out. It’s user-friendly,
and has most of the features you’ll want for video editing. It’s a bit slow, and I got
frustrated with how frequently it crashed a few years back, but they’ve been working hard
on stability since then. There’s absolutely a strong potential.


Installing OpenShot video editor





	OS

	Installation method





	Windows

	choco install openshot



	Linux

	apt install openshot



	macOS

	Go to https://www.openshot.org/download/ and run the installer






If you’re on Linux, KdenLive[URL24] is also worth a look. It seems
significantly faster. Blender actually has full-featured video editing capabilities as
well, and is quite stable. The user interface may take extra work and training to get used
to, but it may actually be the most stable multi-platform experience. Tutorial playlists
like Mikeycal Meyers’[URL25] can get you
operational fairly quickly.

Other than that, Windows Movie Maker on Windows and iMovie on Mac are very polished and
usable. The real point is to get that phone camera out and try to make little movie
productions. As much as we have video cameras in our pockets these days, it’s a bit
uncommon to see someone put a film together. You have all you need at your fingertips
already, so making a movie could be a fun activity for some rainy day. At least
personally, I really cherish the old home videos I have from my childhood a lot more than
the photos.




Making games

In the 1990s I was hoping to learn how to make video games. I got a book about doing it in
the C programming language and it started with putting the graphics card into VGA mode
13h and writing pixels to the double-buffer one at a time. In other words, it was
a bit inaccessible for me at the time, and I never got very far.

With the advent of widely available game engines,
things have changed dramatically. These are software systems that make games. They come
with so many features that you can make simple games without writing any code whatsoever.
Of course, for advanced games and logic, code will eventually be needed.

Unity3D[URL26] is such a game engine that makes games for phones,
computers, and game consoles.  A free beginner version lets you try it out
(though you do have to pay once your games start making over $100k on app stores). The
free version is more than sufficient to start going through some of the training material.
The tutorials[URL27] will walk you through the basics
and whet your appetite so you can see if you want to keep going with it or not.

This high-level game programming is a fun way to start. That said, you’ll still
gain much in going under the hood to learn what’s really going on. The world will
always need low-level developers to keep the lights on for the rest of us. For that,
you’ll need the chapter on Programming.



From cropping photos to DJing parties, I hope you’ve enjoyed this taste of what kind of
creative things you can do on your computer. We’ll continue along these lines in the next
chapter as we learn about getting the written word out there.

Footnotes



[1]
Ray tracing actually transports virtual photons backwards from the camera
to the light source. This ensures that the computer only spends time on light that will
actually be seen rather than wasting computer cycles on light that goes way off into the
distance.



[2]
There’s a great video demo of how exciting the SBPro card was and all the
little included goodies at https://www.youtube.com/watch?v=g15J44xB2zU.



[URL01]
https://www.gimp.org/



[URL02]
https://www.imagemagick.org/



[URL03]
http://www.imagemagick.org/Usage/



[URL04]
http://www.fmwconcepts.com/imagemagick/index.php



[URL05]
https://inkscape.org/



[URL06]
https://krita.org/en/



[URL07]
https://opentoonz.github.io/e/index.html



[URL08]
https://www.blender.org/



[URL09]
https://www.youtube.com/playlist?list=PLa1F2ddGya_8V90Kd5eC5PeBjySbXWGK1



[URL10]
https://www.solidworks.com/



[URL11]
https://www.freecadweb.org/



[URL12]
https://github.com/yorikvanhavre/BIM_Workbench



[URL13]
http://www.salome-platform.org/



[URL14]
https://openfoam.org/



[URL15]
https://www.darktable.org/



[URL16]
https://www.youtube.com/playlist?list=PLsks-zRRM1ZVN_g7P6ZAsYVqTltmXyBjl



[URL17]
https://www.audacityteam.org/



[URL18]
http://hydrogen-music.org/downloads/



[URL19]
https://lmms.io



[URL20]
https://docs.lmms.io/user-manual/4-production/4.6-your-first-song-with-lmms



[URL21]
https://www.mixxx.org



[URL22]
https://ffmpeg.org/



[URL23]
https://www.openshot.org/



[URL24]
https://kdenlive.org/



[URL25]
https://www.youtube.com/playlist?list=PLjyuVPBuorqIhlqZtoIvnAVQ3x18sNev4



[URL26]
https://unity3d.com



[URL27]
https://unity3d.com/learn/tutorials







            

          

      

      

    

  

    
      
          
            
  
Publishing

I once had the pleasure of visiting the Plantin-Moretus Museum in Antwerp, Belgium. It’s a
UNESCO World Heritage site that used to be a 16th-century printing facility.
Before visiting, I didn’t realize how difficult it was to publish the written word and
sheet music. A punchcutter started by carving each letter on the end of a hard steel
punch, often after softening it in a flame. These punches were then pounded into softer
metal like copper to create an imprint. The imprint was then placed in a hand mould, where
still softer metal was poured in, cooled, and then taken out. This seemingly round-about
process was designed to mass-produce many exact copies of what the punchcutter had
laboriously carved.

These pieces of type were organized in cases, with the case of larger letters placed on the
compositor’s upper rack and the case of smaller letters placed on the lower rack (hence “upper case”
and “lower case” letters).  Once numerous copies of each letter in different sizes and variants were
cast, they’d be painstakingly arranged by compositors and placed into a string-bound type galley,
proof-read, placed in the press, inked, and pressed onto many copies of paper. Then there was
the binding and transportation. Woo-eee!

Advances in printing did occur between Gutenberg and the digital age, but the advent of
computers and the internet was by far the most revolutionary change the industry has experienced.


Publishing online

The internet is an amazing, almost magical publishing venue. Anyone with a phone can type something
in and it will be available instantly to people all around the world. The vastness introduces dual
problems. Authors need to ensure people around the world want to and can find their material.
Meanwhile, readers need to filter through an increasing amount of noise to find what they are
interested in.

In the following sections, we will explore a few options for publishing online.


Sign up for a web publishing service

Aside from posting on Facebook, the easiest and fastest way to get your words online is to
sign up with a service provider who offers publishing. Wordpress[URL01] is a famous
example of such a service that is used to make some large fraction of the world’s web
pages.  Medium[URL02] is another. Wix is another.  These are polished services that will guide
you through everything you need to get your words out there. You will be able to type your
content in a nice web-based form that has all the formatting options you’re used to from a
word processor.  If you get a free account, they may show advertisements to people who
visit your page.



Getting your own web address

If you want the www.yourname.com domain name, you have to pay someone a modest fee
(typically around $10/year) to register the name. The Domain Name System (DNS) behind this
works much like a phonebook for the internet. I have used Namecheap[URL03] to buy my
domain names for decades and have never had a complaint. Countless others exist as well.
When you go to these services (called domain registrars), they will present you with a
search form. You type in the name you are seeking and it will tell you whether it’s
available, and how much it will cost. Many names are taken, but if you do find one that’s
really catchy, they may charge you a premium. If yourname.com is not available, you
may be able to get yourname.io or even yourname.horse, among many other top-level
domains, as these suffixes are called.

Once you find a name and buy it, you configure it by pointing the name to your server, or
by telling anyone who goes to your name to forward the lookup request to some other name server.
You can generally point your own domain name to
any of the polished web services mentioned above. On Wordpress, for example, you will point your
domain’s lookup servers to ns1.wordpress.com and Wordpress will make sure to
forward people on to your page. Behind the scenes, something
like this will happen:


[image: digraph fig {    request [label="Customer goes\nto mysite.com"];    dns [label="DNS looks up name,\nreturns delegate\nnameserver"];    ns [label="Nameserver points\nto web server\nIP address"];    server [label="Your web server\nsends web page"];    request -> dns -> ns -> server ;     namecheap [shape=rect,label="Handled by registrar\n(e.g. Namecheap)"]    dns -> namecheap [dir=back];    {rank=same; dns;namecheap}     wordpress [shape=rect,label="Handled by host\n(e.g. Wordpress)"]    ns -> wordpress [dir=back];    {rank=same; ns;wordpress}  }]


Behind the scenes with domain names





Make your own web page

If you want more control and flexibility, and are willing to learn more to get it,
you can always make your own web page. Do this if you either want to make a hobby of web
development, or you are interested in going professional someday in tech. You need two things:


	An internet-accessible place to put your content (a web server)


	The ability to make web-browsable content that displays in a web browser




Web hosting companies will allow you to put files and content management systems on their servers
for a modest fee. PC Magazine ranked HostGator, Dreamhost, and Hostwinds highest in 2019. Once you
have your server space, you point your domain name to it. Some people even use their home computers
as servers and leave them on all the time for this, but many internet service providers frown upon
this.

Now you have to put content up. You may create the content on your local computer and then
upload it to the web server using a secure file transfer program such as SSH or WinSCP.


Writing a web page from scratch

Web browsers read a markup language called HyperText Markup Language (HTML). The most
rudimentary way to make a web page is to write HTML by hand in a text editor. It looks
like this:

    <html>
    <head>
        <title>My neat web page</title>
    </head>
    <body bgcolor="green">
        <h1>Welcome to my web page</h1>
        <hr />
        <p>I am a business consultant and you can hire me. Please contact me at <a
        href="mailto:myemail@myserver.tld">my email address</a>. 
    </body>
    </html>





You can save this to a file called bad_webpage.html and load it in your browser (by
double-clicking the file, usually). It looks like this:


[image: An old-looking green web page]

A terrible yet nostalgic web page




Exercise

Write a similar web page in a text editor and open it up in your web browser.



If you upload this to your web server, you will have your own web page, written from
scratch by you.

In reality, very few people do it this way anymore. It’s just too hard to update hundreds of
pages that may get broken links. Or if you want to change the look and feel of the site,
you can’t be expected to change each page individually. There is, however, value in knowing
the basics of HTML because the syntax and features are often used in other tools.



Using a Content Management System

Wordpress is an example of a content management system (CMS) that accommodates the
management of web pages. Besides signing up with Wordpress.com as discussed above, you can
also install the open-source Wordpress application on your own server and publish through it.
Literally hundreds of other self-hosted CMSs like Joomla offer a balance between
control and ease. Many web hosts provide single-click installations of a variety of CMSs
so you can try a few out as a learning process, and then choose one to deploy for your
next business, fan-club, or project.



Static site generators

As CMSs got more complicated and heavier-weight, another approach emerged: the path of the
static site generator. Where Wordpress requires a resource-intensive and sometimes-slow
database system, static site generators target the convenience and power of a CMS without
needing a central database.

These make even more sense today due to the prevalence of cloud computing platforms. If your website
gets featured on a popular news aggregator, the traffic spike can bring your little server to a
halt. With static sites, you can just ramp up and down how many duplicate servers you’re using
willy-nilly and toss in a load-balancer that distributes readers to each server equally, and you’ll
handle the traffic just fine. One excellent example of a static site generator is called Jekyll[URL04].

These systems are non-trivial to set up and get going with, but they are quite nice. We’re
using Jekyll for https://whatisnuclear.com, for example.




Other Topics

This just scratches the surface of web publishing. There’s a whole world of front-end
design and development covering things like JavaScript and Cascading Style Sheets (CSS)
that allow you to tweak and polish every aspect of what the web user sees. Entire
back end systems make web pages interactive.  You’ll read more about that in Programming.




Publishing PDFs

Web pages aren’t for every kind of document. Reports, articles, and books are often better suited
for documents that come across the internet as PDFs and look great when printed. Here we’ll learn
how to efficiently build beautiful PDF documents.

This is particularly interesting to all you scientists out there. Here we’ll learn about some
systems that make it easy to get journal manuscripts into the right format, with all the
cross-references just right and all the citations in the right format. It’s not your job to get a
bibliography formatted correctly; that’s the computer’s job.

The systems we’ll learn about also excel at generating stunning, elegant, and unique resumes.


Introduction to LaTeX

In this section, we’ll learn about LaTeX, a publishing system infamous for having ardent
followers while being considered too annoying to deal with by most people. We’ll show what
it can do, explain why some people love it, show you some recent advances in potential
workflows, and give you enough information to make informed decisions about using it or
not.


Note

The TeX in LaTeX is related to a Greek root that means both art and
technology. It’s pronounced roughly like “teck”. The La part is pronounced “lah” or
“lay”, you get to choose which one you prefer.



LaTeX and related technologies essentially build documents from a descriptive
pure-text language, similar in concept to the raw HTML file seen in Writing a web page from scratch.
This enables some efficiencies, including:


	Table, Figure, Reference, and Section numbering is totally automatic.
Cross-references are updated for you, so you never have to re-number anything if you add a
new table.


	The format of the bibliography is auto-generated. Various publishers give out
bibliography style definition files so you can seamlessly switch between them.


	Text-based source can be version-controlled in detail for the ability to rewind in time
and collaborate with others (see Using git).


	Equations are typeset beautifully. LaTeX is particularly popular in math journals.


	The layout of the document and letter spacing is handled for you.


	Documents can be assembled from multiple places, so the cover page manager can define the cover
page and it will automatically be used in any documents that pull it in.


	Documents or reports can be automatically generated or updated by a program (more useful
for updating engineering reports based on simulations than for traditional publishing).




LaTeX has notable downsides:


	The syntax of LaTeX source has a learning curve that most people are not
willing to climb given how easy well-known alternatives are (though recent
advances in lightweight markup languages and document conversion with pandoc are alleviating
this, as you’ll soon see).


	It can be difficult to get a document to render exactly to your liking. Inserting
images can be a pain compared to point-and-click solutions (fortunately,
point-and-click LaTeX editors exist these days).


	Most people don’t know how to install LaTeX or run it (we will solve this problem
momentarily).






How to run LaTeX

Let’s go through a basic LaTeX workflow.


Installing LaTeX (warning: it’s huge and this may take a while)





	OS

	Installation method





	Windows

	choco install miktex



	Linux

	apt install texlive-latex-extra



	macOS

	brew install --cask mactex






Make a text file called mypub.tex and put something along these lines in it:

\documentclass{article}

\title{On the writing of \LaTeX{} and building of a PDF}
\author{Your name here}
\date{July 2035}

\begin{document}

\maketitle
\section{Writing the source file}
\label{sec:writing}
Writing the source may look odd at first, but once you start, it's not so
bad. Also, there are WYSIWYG\footnote{What you see is what you get} editors that make
it easier.

One thing that's really nice about \LaTeX{} is math. Here is an equation:

\begin{displaymath}
    R = \sum_{g=0}^{G-1} N_i \phi_g \sigma_g
\end{displaymath}

\section{Another section}
As you saw in Section~\ref{sec:writing}, you can make equations\cite{brown2018endf}.

\bibliography{myrefs}
\bibliographystyle{ieeetr}

\end{document}





Also, make a separate text file for the references called myrefs.bib. This file can be
built with a reference manager (like Zotero[URL05] with the Better
BibTeX plugin[URL06] or JabRef[URL07]) but for starters let’s fill it manually. You can find
citations in the proper format through Google Scholar[URL08]. Find the reference you want,
click the little " icon, and then click the BibTeX link at the bottom. It will
present you with text that you can copy and paste directly into myrefs.bib. Choose
your own journal citation to use, or if you want to type one in yourself, it looks like
this:

@article{brown2018endf,
  title={ENDF/B-VIII. 0: The 8 th Major Release of the Nuclear Reaction Data Library with CIELO-project Cross Sections, New Standards and Thermal Scattering Data},
  author={Brown, David A and Chadwick, MB and Capote, R and Kahler, AC and Trkov, A and Herman, MW and Sonzogni, AA and Danon, Y and Carlson, AD and Dunn, M and others},
  journal={Nuclear Data Sheets},
  volume={148},
  pages={1--142},
  year={2018},
  publisher={Elsevier}
}





Note how that article name (brown2018endf) is the thing we referred to in the citation
in section 2 of our source file.

Let’s build the document. From the command line in the folder where we made our two files,
run:

latexmk -pdf mypub





Now you should see mypub.pdf in that directory, which looks like this:


[image: A Nice looking PDF]

A beautifully-rendered document with automatic references and citations.





Official LaTeX templates

Most major journal publishers give out LaTeX style files to authors. These put the
formatting completely in their control; you just write your content. For example, Science
Magazine offers their template here[URL09]. Universities also typically have
these for dissertations.



Using LaTeX from a GUI

Modern GUIs for editing LaTeX files are quite good. They let you leverage most of
the ease of a word processor with the added power of LaTeX. They’ll automatically insert
section labels and offer dialogs to help you build tables, insert figures, provide
spell-checking, give integrated PDF previews, and so on. TeXstudio[URL10] is the most popular
GUI TeX editor. It is available in your package manager if you’d like to try it out.


Trying out TeXstudio

	OS

	Installation method





	Windows

	choco install texstudio



	Linux

	apt install texstudio



	macOS

	brew install --cask texstudio






Another option is to use LyX[URL11], which actually keeps the TeX code
behind the scenes for the most part. It is the closest thing to a word processor that uses
LaTeX. I wrote my dissertation with LyX.

For web-based collaboration, ShareLaTeX[URL12] is the cutting edge.

See also: Wikipedia’s
comparison of TeX editors[URL13].



Easier workflows with lightweight markup languages

Even though it’s very powerful, I cannot deny that writing in pure LaTeX can be tedious.  Nor is
it overly versatile; it directly produces PDF documents but not web pages or other commonly-desired
formats from a single source. The concept of lightweight markup languages (LMLs), also known as
humane markup languages, can help get the powers of LaTeX without as
much pain.

Two popular LMLs are Markdown and reStructuredText (RST). Markdown is particularly simple, while RST
is slightly more complicated (but also significantly more featureful). It’s becoming more common for
people to write technical documentation, reports, web pages (often for static site generators), and
even books in LMLs.

RST is usually associated with a tool called Sphinx[URL14] which was originally created to help
write documentation for the Python programming language. It includes facilities for
cross-references, indices, code snippets, glossaries, and citations, plus it can output to
HTML, LaTeX, ePub, and more. As it turns out, this system is useful for more than just
technical documentation and finds wide usage in other things.  Indeed, this book itself
was written in RST and processed through Sphinx to ePub, PDF, and HTML
formats!

Pandoc[URL15] is an outstanding tool that simply converts various document formats between one and the
other. It’s a good way to go from an LML to HTML for the web, LaTeX for print or PDFs, ePub for
e-books, or even MS Word (and vice versa). You can try making a diary in Markdown and render it to a
beautiful PDF with pandoc on demand. It does an incredible job and continues to just
surprise me by working so well. Let’s convert that LaTeX sample from above to a Word
docx file.


Installing pandoc document converter





	OS

	Installation method





	Windows

	choco install pandoc



	Linux

	apt install pandoc



	macOS

	brew install pandoc






Then run the following in the command line (in the same folder as mypub.tex from
above):

pandoc -s mypub.tex -t docx -o mypub.docx





The options are -s for source, -t for to, and -o for output file name.
Open this up in Word or LibreOffice and voila! Baffling, isn’t it?

Best of all, these kinds of workflows can be revision-controlled and collaborated upon using
git, which you’ll read about soon.

It must be stated that Microsoft Word has improved mightily through the years in terms of section
numbering, cross-referencing, and citations. It integrates with many powerful reference management
tools like EndNote and really isn’t all that bad. For the data-centric world of the near future,
where information presentation must come from diverse sources and come together elegantly and
collaboratively, the tools we’ve discussed here unlock many superpowers.




Publishing eBooks (and books)

The advances in publishing since the days of punchcutting have brought us to a situation where it’s
quite straightforward to publish an entire book digitally and in paperback. Even a
few years ago, it could require significant investments to publish a book, whereas now digital
delivery costs nearly nothing and print-on-demand services will print only as many books as are
ordered.  You still have to invest in writing, obviously, and possibly cover design, advertising,
editing, and so on.

Self-publishing a book rather than getting a publishing company to do it is an exciting venture.
You get to maintain full creative and financial control, but you’re on the hook for making sure
everything is good, and for advertising/promoting the book. If nothing else, it’s fairly low-risk if
you don’t invest too much on artists, editors, advertisements, or your book tour. The exciting
point is that, with a computer in hand, you have everything you need to self-publish your first book.

E-readers use a variety of formats, many of which are locked down with special encryption called
Digital Rights Management (DRM) that prevents people from copying books left and right. Before getting
converted to a locked-down file, manuscripts often pass through the ePub format, which is
similar to HTML and has the benefit over the PDF format of being reflowable (so it works with
different font and screen sizes).

Many authors write manuscripts for eBooks in a word processor and use services to convert them into
the ePub and/or the DRM-friendly formats. For example, Kindle Direct Publishing[URL16] offers tools that can convert .docx files from MS Word into the
format necessary for publishing Kindle eBooks and printed-on-demand paperbacks. They’ve automated
much of the work, and provide great tutorials and videos to walk people through all steps. They even
have a Cover Creator tool, but I bet you can do a great job on your own with Inkscape for your first
book. If you plan to sell a lot of copies, engaging a professional cover artist will run between
$300-$1200. Besides KDP, Lulu.com[URL17] offers similar services in case you’d like to
shop around.

Barring those services, the LaTeX system discussed previously is perfectly capable of
creating ready-for-print physical books, but it won’t be very useful for getting something
onto an e-reader (PDFs generally look bad on e-readers specifically because they are not
reflowable). Perhaps surprisingly, the Sphinx system and the ReStructuredText LML are a
fairly powerful combination for self-publishing. It’s advanced enough to let you add
metadata that will generate the entire book including an index, a table of contents,
cross-references, footnotes, images, hyperlinks, and a glossary in ePub (for
e-readers), PDF (for print), and HTML (for the web).  Once you have an ePub
file, Amazon provides something called KindleGen on Windows, macOS, and Linux that
will convert it to a mobi format appropriate for uploading to Amazon/KDP.

For example, to have an index point to the proper page numbers for some keywords, you simply list
them before the paragraph that they appear in, like this:

.. index::
    single: Horses

The joy of horses
-----------------
Horses are fine and majestic animals.
They have four legs and love oats.





Very rich indices can be generated by populating a manuscript with this kind of
metadata.

Getting the formatting exactly right is non-trivial. Neither is grammar checking (though check out
LanguageTool). Thus, I do not recommend this approach to anyone who is not keenly interested
in “going it alone” and having full control with an open-source stack. It’s certainly possible.



This concludes the chapter on publishing. You’ve learned many new and interesting ways to get the
written word out to the public. I hope the opportunity arises for you to exercise these
tools.

Footnotes



[URL01]
https://wordpress.com



[URL02]
https://medium.com/



[URL03]
https://www.namecheap.com/



[URL04]
https://jekyllrb.com/



[URL05]
https://www.zotero.org/



[URL06]
https://github.com/retorquere/zotero-better-bibtex



[URL07]
https://www.jabref.org/



[URL08]
https://scholar.google.com



[URL09]
http://www.sciencemag.org/authors/preparing-manuscripts-using-latex



[URL10]
https://www.texstudio.org/



[URL11]
https://www.lyx.org/



[URL12]
https://www.sharelatex.com/



[URL13]
https://en.wikipedia.org/wiki/Comparison_of_TeX_editors



[URL14]
http://www.sphinx-doc.org/en/master/index.html



[URL15]
https://pandoc.org/



[URL16]
https://kdp.amazon.com/en_US



[URL17]
http://www.lulu.com







            

          

      

      

    

  

    
      
          
            
  
Programming

The real power of computers, of course, comes from programming them. Knowing how to
program even a little bit unlocks untold opportunities to make the computer work better
for you in the most personal of ways. Besides, programming skills also unlock very
well-paying jobs. The advent of Machine Learning-assisted programming is clearly going to
make an impact on the art of programming in general, but in order to be ML/AI-assisted,
you’ll want to have a solid foundation in the basics regardless. In this chapter, you’ll
try a version control system called git, write a few simple Python programs, find
resources on machine learning, and be introduced to a web app framework called Django.


Tracking changes of anything

Even if you never program, you will benefit from knowing about version control systems
(VCS). A VCS allows you to create a rewindable timeline of anything you’re working on.
Think of it like the “Track Changes” feature of a word processor, but more powerful and for
more than just documents.

VCSs are generally associated with programmers because they really benefit from having a
rewindable timeline of their software. This comes in handy often, such as when a program
that used to work no longer works. Programmers look at the timeline of the source code
changes, rewind it, and play it back, all the while running their program to find out
where the bug was introduced.

Some people keep their résumé in a VCS. They want to see it progress, and also “branch” it to
make slightly different versions for various job applications.

A VCS is also wonderful for collaboration. You know how people e-mail around versions of
documents like Proposal_FINAL_final_nt_jrc2_draft.docx?  A VCS can make that kind of
operation much better. Everyone can work on their own copy of a document and then these
can be merged together. One hiccup with this approach is that VCS works best with pure
text files so if you want to go this route, consider a lightweight markup language like
ReST or Markdown (see Publishing).

Some notable VCSs include git[URL01], mercurial[URL02], subversion[URL03], and Perforce[URL04]. Git is a fairly
universal favorite. It’s the eponym of the famous GitHub, which Microsoft acquired in 2018
for several billion dollars.


Using git

Git has a slight reputation of being hard to learn. Fear not, it’s not that bad.
Git is made for the command line, but can be used graphically if you prefer.
For the most common uses, you only need to know a few commands. Here they are:


Some key git commands





	Command

	Purpose





	git init

	Initialize a new git repository in the current folder



	git clone

	Make a local copy of a remote repository (e.g. from GitHub or your team)



	git add

	Mark one or more files to be part of a new commit that is in process



	git commit

	Take all marked changes and package them as a discrete “change” to be remembered
forever.



	git pull

	Update the local repository with any changes someone else made on the remote
server.



	git push

	Send all our local commits to the remote server (for collaboration)



	git log

	View all changes you or anyone else has made



	git checkout

	Check out a previous commit or separate branch (for going back in time or trying
alternate paths)






The best way to learn is to try it out and experiment.


Installing git





	OS

	Command





	Windows

	choco install git



	Linux

	apt install git



	macOS

	brew install git






In a new empty folder, run git init to start a new repository. Create a new text file called
file1.txt in the folder using your text editor and write a few lines in of your choosing. For
example:

Uncle Dave: Married to Rose; likes putt-putt
Aunt Malia: Went to University of Michigan
Cousin Jingjing: From Hawai'i
Third-cousin Pete: Enjoys cooking





Stage it with:

git add file1.txt





Commit it with:

git commit -m "Initial commit of relatives"





Make some changes to the file. Delete a line or add a new one. View the differences from the last
commit by running:

git diff





Stage and commit the new changes (by repeating the steps above). Now let’s say you want to go back
to the initial version of the file by rewinding it to the first commit. First, you need to find out
what the commit’s “address” is, which is a long string of letters and numbers. Run:

git log





to get a list of commits. Copy the first 8 or so letters/numbers from the first commit’s address and
fill them in for your version of the following command (your address will be different):

git checkout a3e2b54





Now look at the file and you’ll see that it’s at its original commit. Go back to the latest commit
with:

git checkout master





There, you’ve used most of the primary git operations now. Undoubtedly some of these
commands will feel a bit mysterious still.  There’s a whole free book on it on the
official git web page called Pro Git[URL05] and countless tutorials on the internet. We’ll do
a similar example but on a collaborative repository in the next section.

Besides working on text files, there is also an extension called Git Large File Storage[URL06]
(LFS) that can be used to store big binary assets efficiently in a git repository
(graphics design files, science files, etc.). Git-annex[URL07], as alluded to in Backups, can track information
about large sets of files without storing the files themselves in the git repository. This
was originally built for managing metadata and synchronization of photo and music
libraries. It’s finding uses in advanced areas like big-data research as well.



Fixing something in a GitHub repository

GitHub[URL08] is a website (now owned by Microsoft) that stores thousands of projects’ git
repositories. You can clone, pull from, and push to it to collaborate on building
software. As an exercise let’s see if we can contribute to an open-source project.

First, you’ll need a GitHub account (use your password manager to make your
password!). Next, find a repository to send a pull request too. You can either make your
own repository and use it, or actually make a contribution to another team’s. One
really easy one to try would be to search GitHub for common misspellings of a word and
then just make a change to correct it. It’s best to find misspellings in comments so you
don’t risk messing up the code. Even better, add some clarification to the documentation of a
project you’ve been using a little.


Note

Make sure the repository has recent activity or else the maintainer may not ever
respond to your pull request.




Workflow for collaborating with people on GitHub

	Operation

	Description





	Fork the target repository

	Choose a repository to update and navigate to it. Click the “Fork” button in the
GitHub web page. This will make a copy of the repository on your own account.



	Clone your copy of the repository to your machine

	From the command line, run git clone https://github.com/user/repo.git filling
in your username and repo.git according to your fork (you can get this address
easily by clicking the green “clone” button in GitHub)



	Make the modifications to the source code on your computer

	Navigate to the file(s) you want to change, change it, and save it.



	Stage and commit your changes to your local repository

	Run git add -u to stage all changed files and then run git commit -m
"Updated spelling" (use an appropriately descriptive commit message).



	Push the changes up to your personal fork of the repository on GitHub

	Run git push origin. Now your change is live on GitHub but only on your fork of
the original project. You may have to type your GitHub password at this stage
[1].



	Create a pull request to communicate with the original team

	There should be a button on your GitHub now that says “Pull Request”. Click it and
fill in the form with details of what you changed and why. This will now enter
into a review/approval process with the original team. If they accept it, your
change will go live.






That’s it. As usual, this is just scratching the surface, but these are the fundamentals. If
you can do this, you are basically ready to participate in collaborative development or
publishing using git. And with that, let’s get to the actual programming.




Why program?

Programming is the Holy Grail of digital superpowers. Things like Machine Learning,
gaming, business process, social networking, and so on are rooted in programming. Of
course, it is an entire discipline that can take years or even decades to truly master, but
you can do meaningful things very readily, and go from there as suits your situation. If
you want, you can make an entire well-paid career out of it. Or you can just dink around.

I’m fairly convinced that programming should be a fundamental topic in middle schools all
the way up, possibly even displacing some required math curriculum that very few
people end up using. I say this as a Ph.D. hard-science engineer: I have never ever had to
do long division of polynomials and I never will. But boy have I seen people in all walks
of life struggle with things where a bit of programming exposure would have helped.

The single best way to learn how to program is to recognize that you have a problem you
want to be solved, and that a program could help you solve it.  For example, a friend of
mine who is now an applied mathematics professor at Harvard gave me his favorite math riddle
once:


Given two 8’s and two 3’s, combine them with the four basic math operations (+, −, ÷,
×) to get 24. You have to use each. For example, 8+8+3+3 is a valid guess, but it’s
wrong because that equals 22, not 24. Similarly, 8×3=24 is invalid because you only used one 8
and one 3.




I struggled for a while and decided that a program guessing all the potential options
would be useful. In the end, it worked!

More practically, a friend was doing some medical research using a large dataset of
pharmacy refill data and was going through this painstaking and error-prone process in a
spreadsheet to quantify potential medication gaps. She explained her process in detail and
then I helped her whip up a little program that did what she was doing. Thus, she was
liberated to tweak and debug her process. She ran the program dozens of times, analyzing the
algorithm she was using and coming up with interesting conclusions.

Personally, I’ve spent many years writing programs that help simulate nuclear reactors.
Once we have a virtual nuclear reactor we can adjust its design and perform “experiments”
that would cost billions of dollars to run in the real world until we think our design is
optimal. We have to put a lot of effort into making sure the models match reality (e.g. by
simulating things that really operated and comparing results to measurements). The synergy
between physical models, numerical simulations, and experiments is a real work-horse in
science and engineering across the board.

Then, of course, professional programmers build and maintain all the massive software
systems behind a large fraction of our everyday experiences.



Programming languages

Hundreds of programming languages exist. Each of them has the goal of
translating (or compiling) human input (source code) into electrical operations the
computer can perform.  Their differences arise from different trade-offs their creators
were aiming for:


	Is it better to have a really fast-running program that can crash without saying why, or
one that runs slowly but tells you in detail where it was when something went wrong to
help with debugging?


	Should the same source code run on many types of computers, or should the programmer have to
maintain different versions for different machines?


	Should the programmer have to wait 10 minutes between changing the source code and
running the program so the compiler can optimize aggressively, or should it be instantaneous?




Very low-level programming languages like assembly run extremely quickly, but
require customizations for every model of CPU and are challenging to write.
Conversely, high-level languages like JavaScript are pleasant to read but generally slow.
One of the more recent and very popular languages, Rust, attempts to let programmers
write very “safe” code (if it compiles it will have fewer bugs than usual) while still
running extremely quickly, and in parallel.

Among the data science, automation, web, and engineering industries (and many others!), the
Python language has been doing very well in the past decade or two. It’s a high-level
interpreted language that runs slowly on its own. But it’s so popular that people have
interfaced it nicely with some lower-level screaming-fast math, graphics, and machine
learning libraries, rendering it a pretty good workhorse. There’s also a vibrant collection
of other modules people have made that do all sorts of things like statistical analysis,
graph creation, and web apps. Here, we’re going to try out Python. Depending on your
end goal, another language may be better.



Writing Python programs

Before writing a Python program, we need to download the Python interpreter. It’s what translates
Python code into actual operations your computer can perform.


Note

You can skip this step
if you already have Python installed. Find out by running python -V in your
command line and seeing if it throws an error.




Installing Python





	OS

	Command





	Windows

	choco install python.



	Linux

	It’s almost definitely already installed



	macOS

	It’s almost definitely already installed






Run python -V to make sure it works. If you just execute python at the command
line, you’ll be presented with a Python prompt that looks like >>>. Typing exit()
will exit out when you’re done. You can type
Python commands here, and they will execute one after the other. For example, we can use
it as a calculator. First just with numbers:

>>> 2+2
4





All programming languages have variables where you can store the result of some
operation in a name like x or number_of_customers:

>>> x=2
>>> y=5
>>> x+y
7





You can also define sequences and then repeat an operation on all elements in the
sequence in a loop:

>>> names = ["Ford", "Honda", "Jeep", "Chevy"]
>>> for name in names:
        print(name.upper())
FORD
HONDA
JEEP
CHEVY





Built-in libraries provide the ability to do useful things like sample random numbers. When
you run these, you will see different numbers.

>>> import random
>>> random.random()
0.8254737295983463
>>> random.random()
0.2630839054490208
>>> random.randint(1,100)
88
>>> random.choice(['Pizza','Ramen','Eggs','Pho'])
'Eggs'





Random numbers are fundamental to things like games and cryptography. That last line is
basically a universal 8-ball, which is useful if you need help deciding what’s for dinner.


Note

At this point, you’re well poised to run through the official Python tutorial[URL09]. It mostly targets people who
have programmed a little before, but even if you haven’t, it’s easy to follow along and
get some exposure to the syntax and possibilities.



Running commands line-by-line in the Python prompt is useful for exploring and simple tasks,
but real programs are written as sets of commands in text files. See
Text editors and extensions to make sure you have an appropriate program for creating
source code.


A program to approximate \(\pi\)

Let’s make a real
program that does something neat: approximates \(\pi\) with the Monte Carlo method.
This leverages the fact that computers cannot get bored to approximate a fundamental
constant of nature basically by throwing darts.

Imagine you are blindfolded and throwing darts at a perfectly square board with a side length of 1 m
and with a circle drawn on it that just touches the edges.  If you throw randomly,
the number of darts that land inside the circle will be proportional to the area of the circle,
while the number of darts that land anywhere on the board will be proportional to the area of the
square. If you throw millions upon millions of darts, these approximations will become pretty good,
and your counts will tell you what \(\pi\) is.

[image: Figure made with TikZ]

The dartboard



\[\begin{split}\text{Square Area} &= s^2 \\
\text{Circle Area} &= \pi \left(\frac{s}{2}\right)^2\end{split}\]

Dividing those equations gives:


\[ \begin{align}\begin{aligned}\begin{split}\frac{\text{Square Area}}{\text{Circle Area}} = \frac{4}{\pi} \\\end{split}\\\begin{split}\text{or} \\\end{split}\\\pi = 4 \times \frac{\text{Circle Area}}{\text{Square Area}}\end{aligned}\end{align} \]

Instead of throwing the darts ourselves, we can write a program to simulate the dart tosses and
approximate the area ratio. To do so, we put the following in a new text file called darts.py.
Note that all lines beginning with # are just comments and are not executed (so you
don’t have to type them).

import random  

RADIUS = 1.0   # define a constant

num_in_circle = 0 # initialize our count

# ask user how many darts to toss
num_darts = int(input('Number of darts: '))

for _individual_dart in range(num_darts):
    # for each dart toss, grab two random
    # numbers between 0 and 1.
    x = random.random()
    y = random.random()

    # Anyone remember the distance formula? 
    # We can skip sqrt here because sqrt(1) = 1
    d = x**2 + y**2
    if d < RADIUS:
        # increment count in circle
        num_in_circle = num_in_circle + 1

pi = 4*num_in_circle/float(num_darts)
print('Pi is approximately: {}'.format(pi))





Run the program with $ python darts.py at the normal command prompt, not the Python one. If
you still see >>> at your command line, run exit(). It should give:

$ python darts.py
Enter the number of darts: 100000
Pi is approximately: 3.14504





Pretty close! The correct answer is 3.1415926.... If you only run a few
darts, the answer will be much more wrong (try it!).  Ah, the central limit theorem in action!

My computer only takes a second to do 1 million dart tosses, but don’t do too many,
it may take too long! Remember: Ctrl-C will abort a running program if you get stuck.

The program only samples numbers between 0 and 1, so we’re really only operating in the
first quadrant of the dartboard (top left). This is OK because the dartboard is
symmetrical.

What if we want to plot our results? We’ll need some third-party libraries to do that
(things that are part of the Python community but not included in Python itself). To get
them, use the Python package manager, which is called pip. It’s very similar to the
system package managers we’ve been using, but it just pulls in Python modules. We need two
things to have plotting:

pip install --user numpy
pip install --user matplotlib





We have to modify the program to keep track of the (x, y) coordinates and then plot
them in the end. So we’ll make lists to store each coordinate. Here goes (this time as
darts_plot.py):


import random  

import matplotlib.pyplot as plt

RADIUS = 1.0   

coords_inside = []
coords_outside = []

num_darts = int(input('Number of darts: '))

if num_darts > 1000000:
    # error checking
    raise RuntimeError('Too many particles.')

for _individual_dart in range(num_darts):
    x = random.random()
    y = random.random()

    d = x**2 + y**2
    if d < RADIUS:
        # add to the list of coords inside circle
        coords_inside.append((x,y)) 
    else:
        # also track outsiders for plotting
        coords_outside.append((x,y)) 
pi = 4*len(coords_inside)/float(num_darts)
print('Pi is approximately: {}'.format(pi))

# Make plot
# unpack x's and y's into their own lists
xinside, yinside = zip(*coords_inside) 
plt.plot(xinside, yinside, 'b.',label='Inside')

xoutside, youtside = zip(*coords_outside) 
plt.plot(xoutside, youtside, 'gx',label='Outside')
plt.grid()
plt.legend()
plt.title('Approximation of $\pi$')
plt.xlabel('x (m)')
plt.xlabel('y (m)')
plt.show()
# uncomment to save as file
#plt.savefig('darts.png', dpi=200) 






Warning

For this version, you better not try running too many darts or
else your machine really might crash.



And here is the result:


[image: A plot showing a quarter-circle where darts hit or missed]

Plot of 10,000 darts hitting or missing.



Pretty fancy! This is admittedly a very inefficient method to approximate \(\pi\). The
fundamental method of generating random numbers and running computerized trials, however,
is extremely powerful and valuable. First used to model thermonuclear weapons on the
original mainframes in the 1950s, these methods are used all over science, engineering,
risk management, insurance, and finance. Now you’re well on your way to becoming a
high-powered quant mega-millionaire on Wall Street.

For more inspiration about what kind of plots you can make with Python (as well as example
code to learn how to do it), check out the matplotlib gallery[URL10] and plotly[URL11].



A linear regression

Python is great for stats. This is often useful for your research teams and around the
house (I once used regressions to estimate what time the furnace had to turn itself on to get
up to the desired temperature given the outdoor temperature each morning during the
Michigan winter). Let’s do a simple example of reading data in directly from Excel. The
pandas[URL12] library provides high-level data analysis
capabilities, but we’re just going to use it for reading from Excel:

pip install --user pandas
pip install --user xlrd





We need some data to process. Open up your favorite spreadsheet program (Excel or Open
Office Calc will work fine, for instance) and let’s generate some noisy data. Let’s use
a line from this formula:


\[\begin{split}y = mx + b + \epsilon\\\end{split}\]

where:


\[\begin{split}m &= 3.5 \\
b &= 2.3 \\
\epsilon &= \text{Uniform noise from -4 to 4}\end{split}\]


Note

If you have your own data you want to do a regression on, just load that up
instead!



In a new spreadsheet, label the first two columns X and Y. In the first column,
enter the formula: =RAND()*5 to get random x-values between 0 and 5. Click the little
black box in the bottom right corner of the cell and drag it down 30 or more cells to get
lots of random X values. Then in the Y column enter our line as =3.5*A1 + 2.3 +
(RAND()*8-4) [3]. Double-click its little black box to fill down. Save the file as
data.xlsx. It will look like this:


[image: A screenshot of a spreadsheet with noisy data in it]

Example noisy data simulating our line. Yes we could use Python to make these data
but many of us receive data in spreadsheets.



To do the regression:

from scipy import stats
import pandas

# Read data
data = pandas.read_excel('data.xlsx')

# Grab the columns we want
x = data['X'].values
y = data['Y'].values

# Compute the regression
results = stats.linregress(x,y)

# unpack results into useful names
(slope, intercept, r_val, p_val, std_err) = results

# Display results
print('Slope:     {}'.format(slope))
print('Intercept: {}'.format(intercept))
print('R-squared: {}'.format(r_val**2))
print('P-val:     {}'.format(p_val))





Here’s the result with my data:

Slope:     3.473511906229649
Intercept: 1.8192562724560553
R-squared: 0.861400909580644
P-val:     1.1563714298035524e-12





That’s all it takes to do a regression! We can plot it too, by adding this code:

# Make a plot while we're at it. 
import matplotlib.pyplot as plt
import numpy
modelX = numpy.linspace(0,5,10)
modelY = modelX * slope + intercept
fig = plt.figure(dpi=300)
plt.plot(x,y,'o', label='Data')
plt.plot(modelX, modelY, '--',label='Model')

# Add labels & formatting fluff
plt.title('Beautiful regression')
plt.xlabel('X')
plt.ylabel('Y')
plt.grid(linestyle='--')
plt.legend()
plt.text(3.1,3.0,'m={:.3f}'.format(slope))
plt.text(3.1,2.0,'b={:.3f}'.format(intercept))

plt.savefig('regression.png')







[image: A line with noisy data around it]

The random data plotted with the best linear fit.



Hey, not bad! Note that by defining the plot in code, we can afford to spend time
polishing its look to be very professional because we only have to do that part once. We
can then throw a billion different data sets at this program and not have to spend a
second plotting the results; we already did it once, the computer’s got it from here.


Exercise

Make the noise go from -1 to 1 and see if your \(r^2\) value gets
closer to 1.0!




Note

Another great tool for data processing is called R. There’s plenty of debate about
whether Python’s better than it. It’s fair to say that Python is sufficiently good at stats for
production research and has the advantage of being very general-purpose, so if you learn it, you
get stats plus anything else it can do, whereas R is more specialized for stats only.






The bridge to machine learning

From self-driving cars to face recognition to the Terminator, machine learning (ML) is quite a
hot topic. The reason it’s gotten so good is that computer graphics cards have gotten
extremely fast at doing matrix-vector multiplication, largely
driven by the gaming industry (where this math is required for shading as players move
around). Combine this with the universal function (capable of mapping any
arbitrarily-complex input to an arbitrarily-complex output) that is the Convolutional
Neural Network and massive datasets to train them on (e.g. vast quantities of selfies) and
you’ve got yourself a machine learning revolution.

One good way to get your hands dirty in ML is to dedicate yourself to some
fast.ai courses[URL13]. These free online courses are
cutting-edge, and require roughly 8-hours per week for two months or so. Not everyone’s
computer is going to be good at training on large datasets (unless you’re a gamer), but you
can try it out (I got my computer working on them). Better yet, they set up a cloud
environment at Amazon Web Services where you can just log into computers “in the cloud”
that are more than capable of doing the exercises in the class.


Note

Much ML work is done through Python, which interacts with heavier-weight
libraries under the hood. That’s another good reason to choose Python as a first
programming language.



A simpler introduction to computer vision (sort of related to ML) is to play around
with the OpenCV[URL14] library.  It has good Python bindings and you can
even get it going on a $35 Raspberry Pi mini-computer. I’ve seen people make license plate
readers, recognize family members’ faces, analyze video of experiments to collect data,
and lots of other useful things.

A trivial (non-ML) example usage of it is to get some data out of a movie file. I had a high-speed
video of a light mill and wanted to see how fast it was spinning by analyzing
the video [2]. OpenCV is perfect for this. I figured out which pixel I wanted
to watch and then extracted intensity vs. time with a simple program:


[image: A picture of a radiometer with a pixel right on a vane selected.]

Figuring out which pixel to read.




[image: A graph showing a Fourier transform of the light signal.]

Plotting and analyzing the intensity data. Looks like it’s spinning at about 32 vanes
per second. These devices, actually called Crookes radiometers, were originally
scientific equipment that could be combined with a stroboscope to measure the
intensity of light.



The (partial) code for reading this looks like this:

import cv2  # bring in the OpenCV library

def measureIntensities(videoFileName, pointOfInterest):
    """Find the intensity of a point of interest in each frame"""
    video = cv2.VideoCapture(videoFileName)
    intensities = []
    while video.isOpened():
        _returnCode, frame = video.read()
        if frame is None:
            break
        pixelValues = frame[pointOfInterest]
        intensities.append(pixelValues.sum())
    video.release()
return intensities





If you have video of something and want to quantify some element of it with a computer,
OpenCV is your ticket. Once you are comfortable with simple things like this, you can try out facial
recognition and license-plate reading with it as well.



Graphical User Interfaces

Making desktop applications GUI with dialogs, buttons, menus, and forms can make your programs more
accessible and user-friendly. Most programming languages enjoy GUI
frameworks that do most of the hard work of making such interfaces. In Python,
we have Kivy, wxPython, PyQt, Tkinter, and dozens of others. I picked up
wxPython first because of its excellent demo app that lets you try out all its
hundreds of widgets interactively with sample code. Kivy is nice in that it can even run
on cell phones. PyQt is especially polished, though it requires a commercial license if used in
commercial software (not that there’s anything wrong with that).

Perhaps the most universal and modern GUI system is a web browser, which brings
us to the next topic.



Web applications

Almost every web page you go to these days is actually a web application, meaning it’s
running some program behind the scenes and presenting the results to you through a web
browser like Firefox or Chrome. Almost always, there’s a database sitting on the back end
containing the information. For instance, Facebook is conceptually a web-based view of
user data stored in a database and governed by rules and process.

The possibilities with web apps are nearly endless. Unfathomable yet-to-be-created
businesses and services will be web apps. A home inventory could be a web app. Twitter is
a web app. Reddit is a web app. The programs driving web apps are written in many
varieties of programming languages, just like offline applications. Through the years,
though, various frameworks have evolved that contain commonly-needed pieces of web
applications, like user authentication, secure form submission, and secure database
access. Starting with a web framework is a great way to become productive at making safe
and performant web apps rapidly. The hundreds of web frameworks out there all have
distinct pros and cons. We will highlight only one of them here.

Instagram and the Washington Post are among the thousands of web apps built upon a web framework
called Django[URL15] (“The D is silent”). Django is surprisingly nice to use. Having come from a Python
background, the fact that it uses Python made it extra easy for me to pick up. I went through their
Writing your first Django app tutorial[URL16] and was off
and running. This was really an exciting moment for me because I could just feel my mind
expanding… “So many new possibilities. I can make any web app out there with this thing!” It’s the
closest thing to leveling-up I think I’ll ever experience.

Django is extremely well documented and has a fun, engaged community. For example, Django
Girls[URL17] is a non-profit centered on teaching Django to girls around the world while building
interest in programming.


Note

One mental model that’s often used in these
kinds of applications is the “Model-Viewer-Controller” (MVC) pattern. The model
is the database organized somehow, the viewer is the web page rendered with the
data in it, and the controller is the code running to figure out what to show
when, and what you are and are not allowed to do. By separating these units out,
the code remains easy to maintain. Django is designed around MVC.



The sheer magnitude of capabilities Django and its add-ons bring is impressive. Once you get to
the point where you’re defining models, a lot of impressive systems activate automatically. For
example, let’s say you were making a discussion forum where you had made some models that
look like this:

class Post(models.Model):
    title = models.CharField(max_length=300)
    poster = models.ForeignKey(User)
    posted = models.DateTimeField()
    votes = models.IntField(default=0)

class Comment(models.Model):
    title = models.CharField(max_length=300)
    poster = models.ForeignKey(User)
    post = models.ForeignKey(Post)
    posted = models.DateTimeField()
    votes = models.IntField(default=0)





The automatic administration panel would allow you to populate the database with information.
It presents you with web-based widgets that are appropriate for each data type. The
DateTimeField has a calendar pop-up picker and the ForeignKeys have
drop-downs with links to the other instances. You can build custom forms for your users
that automatically get these widgets as well. You can also use the Django REST
framework (an add-on) which will set up an entire system to interact with this app from
other places (other web apps, desktop programs, phones, etc.). In other words, all the
things you typically need to be done with a web app have built-in or readily available solutions.

I simply cannot emphasize how empowering this is. If you learn it, you’ll start wanting to
automate all sorts of inefficiencies around your office, research team, warehouse, or
wherever you find them. The official documentation cannot be improved upon and so to get started,
simply head on over to it and begin. Having Python installed from the previous section is
all you need to get going. I look forward to hearing about the wonderful things you do with these
systems.


Note

Sysadmin skills in running a web server are useful for setting
up production-caliber Django apps, though you can start building apps right away using the
built-in test server that comes with Django.





And there you have it, the ultimate computer superpower. The skills you’ve started here
can change the world, or simply make your life a little better. I hope you’ll find some
exciting, interesting, and helpful uses of these technologies.

Footnotes



[1]
You can alternatively set up SSH keys to avoid typing in passwords all the
time. There are many tutorials on this available.



[2]
There’s a full blog post about this at
https://partofthething.com/thoughts/reading-out-a-crookes-radiometer-light-mill-with-python-and-opencv/



[3]
To get our noise from -4 to 4 we do a random number between 0 and 8 and
subtract 4 from it.



[URL01]
https://git-scm.com/



[URL02]
https://www.mercurial-scm.org/



[URL03]
https://subversion.apache.org/



[URL04]
https://www.perforce.com/



[URL05]
https://git-scm.com/book/en/v2



[URL06]
https://git-lfs.github.com/



[URL07]
https://git-annex.branchable.com/



[URL08]
https://github.com/



[URL09]
https://docs.python.org/3/tutorial/introduction.html



[URL10]
https://matplotlib.org/stable/gallery/



[URL11]
https://plotly.com/python/



[URL12]
https://pandas.pydata.org/



[URL13]
https://www.fast.ai/



[URL14]
https://opencv.org/



[URL15]
https://www.djangoproject.com/



[URL16]
https://docs.djangoproject.com/en/2.1/intro/



[URL17]
https://djangogirls.org/







            

          

      

      

    

  

    
      
          
            
  
Robotics and Hardware

So far we’ve dealt exclusively in software. Whole new ballparks of fascinating
capabilities can be reached by looking to hardware as well. Hardware can interact
physically with us and our environment. And what a time to be alive in the hardware
realm! Of course, to begin interacting with the physical world, it’s best to start
with some user-friendly hardware. The exploration of hardware in this chapter builds on
the skills introduced in Programming, since some coding is required.  Fortunately,
completely novice programming experience is more than enough to begin the journey. In
fact, hardware projects often provide a thrilling motivation for expanding one’s
programming skills.

Smartphones have an astounding number of hardware sensors and input devices on them, but
unfortunately there’s no system that I’m aware of that provides entry-level access to the
data, other than the Unity3D system discussed in Making games. Thus, in order to try out
some hardware-related superpowers, it may be necessary to buy some (relatively
inexpensive) hardware systems. This chapter is therefore simply explanatory.


Warning

Electricity is dangerous and can kill you and/or damage property. Taking an
electronics course is a good way to get started with the kinds of projects discussed
in this chapter if you are inspired to do so.




The era of cheap, user-friendly microcontrollers

Since the early 2000s, the market has been flooded with circuit boards containing a
low-powered CPU, some memory, digital and analog input/output ports (for
interacting with the external world), and network capabilities. These are basically
mini-computers that you can program with your normal computer and then disconnect to put
in a robot, your garden, an art installation, and so on.

One such product is the Arduino[URL01], an open-source
microcontroller (the hardware design is open as well as the software) that really started
the cheap-microcontroller revolution. To use, you attach various sensors, buttons, lights,
or other circuits to it and then write a small program (called a sketch) on the
computer. You transfer the program via the USB port to the Arduino, where it gets stored
on the board and begins executing. These sketches are generally written in the C
programming language, which is lower-level than Python (C is more powerful and faster
but harder to read and write). Getting started, many users keep it attached to the
computer’s USB port as a power source and/or to have it interact with the computer while
executing.  For robots and other things away from the computer, a battery can be used for
power while the embedded program runs.


[image: A picture of an Arduino sitting on a computer in an old basement]

An old Arduino 2009 connected to temperature sensors and relay controllers that fully
automate the temperature of an ancient hot tub, allowing soakers to send text messages
to adjust the temperature while they’re on their way home. The computer reads the e-mails in a
Python program, reads the current hot tub temperature in the tub, and turns the heater relay on
or off to reach the target temperature.



Large collections of add-on boards (called shields) have been built and are on the
market that add additional features to Arduinos.

The Raspberry Pi[URL02] is another extremely popular single-board
computer. It has a much more powerful CPU than most Arduinos, an Ethernet port, a Wi-Fi card, an HDMI
video port, an audio output port, and a port for an optional camera. It can run many of the same
programs you use on your daily PC, like web browsers and word processors. It’s used for computer
science education and has an absolutely huge hobbyist following. A Pi can even be set up to play
collections of old video games (SNES anyone?). People run their entire home automation systems and
self-hosted cloud drives with them (more on that later). Raspberry Pis are certainly more complex
systems than Arduinos, but the extra power makes them practical for running higher-level programming
languages (like Python), and the built-in peripherals make it more flexible.



Some basic peripherals

You’ll need some hardware components to fully embrace the hardware superpowers. Here’s a
list of some useful peripherals.


	LEDs — Little lights that you can turn on and off as indicators in a game, on a control
panel, or for thousands of other uses.


	Resistors — fundamental electronic components that resist the flow of electricity. Often
needed to keep too much electricity from flowing (e.g. often used in series with LEDs). Get a
variety pack.


	Prototype board — a board that you can plug circuit components into to make connections, but
that’s easy to tear down as well. Used for experimenting and learning. Often when a design is
finished, it’s transferred from a proto-board to a custom circuit board with solder.


	Relay board — A series of electromagnetic switches that can be flipped on or off by small voltages
(i.e. from a microcontroller). With relays, you can use a microcontroller to switch on and off
something large like a heater or a large light. As always, electricity is dangerous and can
kill you. Do not hook a relay up to some appliance without appropriate training and safety
precautions. You can often hear relays clicking on and off, and you may recognize the sound from
your turn signal relays in your car clicking on and off.


	PIR motion sensor — Passive Infrared motion sensors are those white plastic motions sensors
you see all over. They are cheap and sensitive. You can build things that respond to motion with
them, like a security system or a Halloween product that yells when people walk by.


	Sonar — Sonar uses sound reflections to measure distances. You can mount sonar peripherals on your
projects to see how far away they are from a wall, or to increase audio pitch as something gets
closer, or whatever.


	Photoresistor — Responds to light. Can be used to build a flashlight-tag game, respond to
darkness, or turn off a light when the sun comes up.


	Transistors — Fundamental components similar to relays but with no moving parts and a
continuum of responses, rather than just on and off. These are the basis of digital technology
behind all of computer technology, but can also be useful for sending more current than a
microcontroller can safely provide to a bright LED or a series of LEDs, among nearly infinite
other things. You will need some for various examples during your training.


	Patch cables — You’ll want a bunch of short multi-colored cables to connect your hardware
pieces together. These are available with double-male, double-female, and mixed end connectors,
and all three styles come in handy.


	Power supplies — While a lot of fun, small stuff can run on USB power, you’ll likely want more
power supplies for certain projects. For example, the LED light strips generally require 12V power
(not the 5V that comes out of a USB port) and a lot of amps. If you want to control LED
light strips you’ll need a power supply and a relay board. These power supplies are exactly what
you plug your laptop and phone in with, but they have different voltages and amp ratings which can
be chosen based on your needs.






An interactive art installation

I’d like to share an example of what kinds of things become possible with the superpowers
we are discussing. A Sweden-based artist named Mary Coble happened upon a project I had
done using a Raspberry Pi to blink a laser in Morse code to communicate with light. She
had used Morse code in previous projects and wanted to set a new one up. Patrons
would type protest chants into a form on their phones, and the installation would beam them
out in Morse code across the town. I agreed to help out, and so began a rewarding and exciting
foray into the world of the art technician.

The project wasn’t simple. Mary had to do all the artistic design and physical
implementation. I provided a shopping list (including a Raspberry Pi, LED
lights, and relays), instructions on how to set up the Pi and wire the lights, and remote
software support. Once Mary had the Pi on her network, I was able to remotely connect and
add the software I had written to receive messages from a web page and switch the relays
on and off accordingly.

In the end, the system had the following schematic:


[image: A flow-chart showing data flowing from internet users to the LED blinks]

The various interconnects in the PULSE system backend



It went well, and Mary did an even larger version of the system in her SHOUT FIRE exhibit
at the Röda Sten Konsthall, in Göteborg, Sweden.


Note

For remote installations of any kind, a reverse SSH tunnel can be useful. Wherever
your controller is plugged into a network, it will seek out and connect to your
server. Once it does, you can connect to the remote device through the tunnel. If you
want to change the behavior of the art installation once it’s installed, this can be a
good option for doing so.



Working with this artist from across the Atlantic, whom I had never met in person, in such an
engaging and cool project was really just wonderful. It felt like the internet really was
bridging gaps in the way people had dreamed of in the early days. What an experience!
[1]



Even cheaper microcontrollers

One of the more astounding pieces of hardware is the Espressif 8266,
or ESP8266. This is a very tiny board with a processor and onboard Wi-Fi capabilities.
In bulk, it only costs $4! It’s now been succeeded by the ESP32 which has Bluetooth as well.
You can find a single unit of either in a nice package online for about $10. These are
super lower power and can be put in about anything you can imagine. These little
guys can be the whole brains and communication system behind whatever Wi-Fi capable little
gadget you can dream up if you were interested in going into the business of building and
selling products. Since they’re so cheap, it’s no problem to dedicate them to seemingly
trivial applications. For example, you can use them:


	To add an internet-controlled thermostat to an old boiler/furnace. It’s basically
a $4 Nest system


	To add a wireless opening sensor to a cabinet (which could be used to set off an alarm or
otherwise keep a child or friend away from something)


	As a doorbell extender that senses when the doorbell goes off and plays a recording of
the doorbell on the stereo upstairs


	As the brains behind a star-tracking camera mount to keep the camera pointed at the same
star for many minutes while the world turns




That last example deserves more explanation…


[image: A photo of a small microcontroller.]

A ESP8266 microcontroller hooked to a set of relays. This combo allows you to make
a Wi-Fi controlled smart switch on a very tight budget, all while learning a ton and
paving the road for even more creative ideas down the road.





A star-tracking camera mount for astrophotography

The Earth rotates 360° every 24 hours, making it difficult to take a long-exposure photograph of
stars with the shutter open more than a few seconds without getting streaks. A simple solution is to
put the camera on a mount that rotates the same exact speed but in the opposite direction,
canceling out the rotation and keeping the stars deadlocked with the lens.
You can buy a camera mount that does this, or you could make one yourself using your
digital superpowers. One simple mechanism is to put two boards together with a hinge and
have a motor slowly turn a screw to push the boards apart. This is called a barn-door
mechanism, and looks schematically like this:


[image: A picture showing a triangular configuration on a hinge]

A schematic of a barn-door star-tracking camera mount.



If you make the distance L equal to 29 cm, a motor that turns at 1 RPM will give you
very close to the right speed. In that case, this project is fairly simple and no fancy
software is needed. But that rate will only work for short exposures. If you want very
long exposures, the motor has to speed up as the screw is inserted more. Mathematically,
just note that the long arm of the triangle in the figure gets longer as the screw slides
along the bottom of the upper board to see why.

If you use a stepper motor controlled by a microcontroller (like the ESP8266), you can
precisely control the speed with which the motor turns, and you can even speed it up as
time goes on to do the tangent correction (as its called) in software!! This is extremely
cool and works very well.


Note

By the way, the Sun is a star like any other, and this project can be adapted with
larger motors to track it with a solar-panel, increasing the efficiency of
your solar installation. The software is the same!



Detailed pictures, source code, and construction steps for doing this exact project
are available under an open-source license at
https://github.com/partofthething/startracker


[image: A photo of an actual build of the star tracker]

A photo of a working star-tracking camera mount.





Controlling hardware directly from your laptop

If you’d like to interface with some hardware but you don’t want or need to bother with
microcontrollers, you can just use your laptop directly for many of these activities. You
do need a bridge to the hardware world. When I first read about Bunny Hwang’s “heirloom
laptop” that he added General Purpose Input/Output (GPIO) ports to, I was really jealous
and thought that was a great idea. That would allow you to control relays, read signals,
blink lights, read data from various sensors, and all sorts of things people do with
microcontrollers right on a laptop. It turns out that you can get a USB device that adds
GPIO ports to any computer quite easily.

The Adafruit FT232H breakout[URL03] is one such device.
Most of the demos you may find online about doing such
things with an Arduino or Raspberry Pi can also probably be done with a board like this
and software on your computer.


[image: Another picture of a small circuit board]

The FT232H breakout board, a general-purpose GPIO system for your USB port.



For example, if you have a simple digital level and you’d like to read the data in live
to support some experiment or other project, this breakout board is perfect. An example
usage would be to precisely measure and calibrate the rate of change of the angle in a
star-tracker like the one just discussed.


[image: A graph showing a linear fit to measured data]

Level data with best fit line for calibrating a star-tracker. The Python code that
read these data and made this plot are included in the star-tracking code referenced
in the previous section, in the calibration folder.





This chapter briefly introduced you to a variety of ways to bridge the gap between computers and
the physical world. I hope these concepts help bring you an “Ah-ha!” moment regarding
something you’ve been dreaming of starting. Many devices on the shelves of stores can be
built using combinations of the components you read about here. What new product can you
dream up?

Footnotes



[1]
The longer version of this story is available at
https://partofthething.com/thoughts/helping-an-artist-with-a-morse-code-protest-chant-installation-in-denmark/



[URL01]
https://www.arduino.cc/



[URL02]
https://www.raspberrypi.org/



[URL03]
https://learn.adafruit.com/adafruit-ft232h-breakout/overview







            

          

      

      

    

  

    
      
          
            
  
Self-Hosting

With all the news about this company breaching trust and that company getting itself
breached by hackers, some of us may feel the urge to take back some control of our data by keeping it
on machines we operate and/or own. This practice is called self-hosting.  Fortunately, those
who want to take a deep dive will find plenty of options. This chapter will explore but a
few.

This is a bonus chapter intended for advanced readers who are either very interested in
the hobby elements of computing or who are thinking of becoming IT professionals and want
to get their hands dirty.


Warning

By self-hosting your data you may avoid the prying eyes of companies out
there, but you take on the full responsibility of protecting what you host. It’s a
constantly changing world out there. New threats come up fairly regularly. It’s often
safest to leave hosting important data or processes to professionals. But that’s also a
lot less fun and educational.




Getting your own server

The first step in self-hosting is to get or choose your server (or servers).

Perhaps the easiest way to do this is to pay a Virtual Private Server (VPS) company money. They’ll
spin up a fresh (virtual) server in one of their data centers and give you login
credentials. You can log in from your terminal and begin immediately. Companies like
DigitalOcean[URL01] and Linode[URL02]
will get you up and running in mere minutes starting around $5/month. The big companies
(Amazon, Google, Microsoft) offer similar services. In this option,
you’re still trusting the VPS host with your data but you’re much more unique, and there’s
at least a little security in obscurity. This is a very good option for trying things out
in any case.

You could get a server going in your own home. This would involve either configuring an
old PC or laptop you have sitting around as a server, buying something like a Dell
PowerEdge entry-level server, or cobbling one of your own together by choosing components and
installing them in a case. This option is not ideal for hosting things like web pages and
e-mail (your home IP address changes frequently, and many ISPs don’t allow hosting), but it
can be really nice for personal things like file storage, home automation, ad-blocking,
or a VPN.


[image: A photo of some computer parts in boxes]

This is what it looks like to buy components of a computer (minus hard drives) before
assembling it. These things effectively snap together but you should enlist the help
of a friend who has done something similar before for your first time.



You could also buy a rack-mount server and pay a data center to let you put it in there.
That will give you reliable power, cooling, and networking but will be pretty expensive.

Most hard-core of all is to build your own rack and get a business internet connection
from your ISP that does explicitly allow hosting. Do this if you want to start your own
data center or something.

Once you have a server up and running, you have to choose which services and programs to run
on it and then install/configure them.



Well-polished self-hosted catch-all

Before mentioning the low-level self-hosting options below you should know that
Nextcloud[URL03] is a very good option to get started in
self-hosting. It can run on your server and will provide personal cloud-based file
synchronization (like Dropbox) as well as calendar and contacts. The company behind it
offers Nextcloud support to businesses who want to run it on their own servers, but anyone
can run a copy of it themselves on their own system, including a Raspberry Pi. Nextcloud
was forked from their now-competitor, OwnCloud[URL04],
which offers similar features. If you go this route, you’ll find the client programs in
your package manager and can easily install them to start syncing.



Self-hosted home automation and security

Computers can do really wonderful things around the home when hooked to various sensors
and switches. Home automation is a major industry with major players. I think it’s fair to
be skeptical of putting control and surveillance of our own home in the hands of other
people. Additionally, if some server in Texas goes down for whatever reason, you don’t want
your house to stop being smart only because it’s totally dependent on the cloud!
Fortunately, the world of self-hosting for home automation is extremely advanced, active,
and welcoming.

Home Assistant[URL05] is an incredible open-source home
automation driver system that was at one point among the top active repositories on
GitHub. You can install it on a computer in your home (even on a cheap little Raspberry
Pi) and have it do all kinds of things. All data stays right at home. Here are just a few
examples of what you can configure it to do:


	Turn your lights on at a certain time and play nice music to help you wake up


	Turn lights on in the living room when you walk in


	Alert you if it’s going to be extra rainy today


	Advise you about your commute options


	Play a Common Loon call[URL06] the
second the Sun sets every day


	Turn your dumb furnace into a smart furnace, heating up every morning before you wake


	Arm a security system when all family members’ cell phones have disconnected from the
Wi-Fi network (and also at night when everyone goes to bed)


	Disarm a security system when any family member reconnects to the Wi-Fi (so you never
have to type a code or anything)


	Trigger an alarm that turns lights on, blares a siren, and e-mails pictures to you from
cameras when a door is opened or motion is sensed while armed (after a brief warning
period)


	Control your TV, stereo, and air conditioner as you desire (e.g. cool it down when you
start your commute on hot days)


	Remind you on certain days of events on your calendar, or when it’s garbage day


	Provide gentle beep noises whenever any door is opened or closed when you’re home


	Rig up a motion-activated jump-scare on a TV for a Halloween party


	Dim the lights at night, and play some cricket noises for ambiance


	Remind you randomly to do pushups


	Monitor your household energy usage


	Turn a closet light off 20 minutes after it’s been turned on


	Turn lights on and off randomly when you’re away to confuse would-be burglars





[image: A picture of some graphs of data from Home Assistant]

A few sensor readings from Home Assistant.



Here are some steps to try out Home Assistant:


	Get a Raspberry Pi kit including a memory card, power supply, and case. It should run you
about $50. This is a full-on Linux computer, but tiny and cheap. Once you set it
up, install it near a stereo and connect the audio output of the Pi to an audio input of
your stereo. This will allow it to alert you of things audibly.


	Get a USB Z-Wave dongle like the Aeotec Z-Stick Gen5, Z-Wave Plus USB. Z-Wave is a
wireless technology not unlike Wi-Fi but on a different radio frequency. It’s designed
for low-bandwidth mesh-networks, meaning a signal can reach the main access point by
relaying from device to device if the access point isn’t in direct range.


	Get a few Z-Wave door sensors, switches, and motion sensors (as budget allows). The
easiest switches to install are basically things you plug into the wall and then plug
your lamp (or whatever) into a socket it provides.


	Install Home Assistant. I prefer the “Virtual Environment” installation method even though
the “docker” option may be a little simpler. Set up the configuration for Z-Wave.





[image: Some photos of smart-home hardware]

A few good Z-Wave sensors and switches. The plug-in ones are very convenient for
adding smart-capabilities to normal things (like Christmas lights), and the
battery-powered door and motion/temperature/humidity sensors last far longer than one
might expect.



Home Assistant uses text files in the YAML format for configuration. The best way to get
the hang of it is to look through a lot of the example configurations people have posted
online. Then, try to make your own automation. The best part about the community is that
you can ask, and they’ll really help guide you through. There’s even a chat room for help.
Here’s one that plays a little beep every time someone opens a door:

shell_command:
  door_chime: play -v 0.6 /pool/Systems/AptPi/Videos/beep.mp3

automation:
    - alias: Doorbell
      trigger:
        - platform: state
          entity_id: binary_sensor.sliding_door
          from: 'off'
          to: 'on'
        - platform: state
          entity_id: binary_sensor.front_door
          from: 'off'
          to: 'on'
        - platform: state
          entity_id: binary_sensor.garage_door
          from: 'off'
          to: 'on'
        - platform: state
          entity_id: binary_sensor.porch_door
          from: 'off'
          to: 'on'
      action:
        service: shell_command.door_chime





These structured-text input files are yet another example of the utility of pure text
files.



Set up your own VPN Server

You may have a workplace that lets you connect to their VPN to get onto the corporate
network and access your files. If you’re feeling up to it, you can actually set up a
personal VPN server for yourself in your home using an open source VPN system called
OpenVPN[URL07]. You can get all the benefits from Using a VPN Service for free
while also accessing your home network from wherever you are, and quite securely! Who
can you trust to not snoop on you better than yourself [1]? People who are into
security cameras, home automation, and other advanced home networking would like this
“road warrior” option. You can even install a VPN server on some of the more powerful home
Wi-Fi routers themselves (some even come with a VPN server capability out of the box!).

Setting up a VPN server may be cheapest if you install an after-market firmware system on
your home router. This isn’t particularly easy and can damage your router if you do it
wrong, so I can’t recommend it unless you have a backup to fiddle with, and are willing to
struggle a little while reading forums on advanced troubleshooting. The standout
aftermarket router firmware is called OpenWrt[URL08]. Once you install it on a
supported router, setting up the VPN server functionality requires a few steps:


	Generating cryptographic keys for the server and all the clients you wish to connect
with (all laptops, phones, etc. you have, and maybe your friends’ too if you want to
charge them).


	Entering the server keys and settings into the router’s configuration (through the router web
interface)


	Adjusting the firewall on the router appropriately


	Downloading and installing OpenVPN clients on all your laptops and phones (use the app
called OpenVPN Connect)


	Copying the cryptographic client keys to each device and importing them into the client


	Keeping track of your home’s public IP address, typically by setting up something called
Dynamic DNS




The tutorials about doing this are very long[URL09],
commiserate with how complex these systems are. Although that particular one is a bit
longer than it needs to be (no use of the LuCI user-interface!?). It looks like the
internet as a whole is short of a great OpenVPN server tutorial at the moment. Of course,
you can also install OpenVPN on any other server, including a VPS. That may honestly be
the best bet for privacy, but you’ll miss out on accessing your home devices.



Your own webserver

As discussed in Publishing, putting web pages online requires server space. Beyond
paying someone to configure and run the servers for you, you can also configure and run your
own. The apache and nginx systems are among the most popular for web servers. If
you do end up going deep with self-hosting, it’s very useful to have one of these systems
operating, even if you don’t have a public web page to host. Since these systems are the
first line of defense for the majority of the internet against attackers, they are made
with security in mind. You can hide many of the self-hosted applications discussed
here behind these efforts. Something called a reverse proxy comes in handy for this,
where you run your self-hosted application on your server, but only expose it to the
public internet through a specially-guarded pathway going through apache.

While many
self-hosted applications do come with their own web-server system, it’s a simple fact that
no matter which one it is, it’s not as widespread as apache. Thus, apache has had
more eyes on it, so when vulnerabilities are found, it gets patched very rapidly.



Hosting your own contacts and calendar

One of the major societal advances evident when one loses a phone is that when you get a new one
and sign in, your contacts and calendar often are still there. This is because they are
“in the cloud” or as we learned earlier “on someone’s server somewhere”. If you have your
own server, you can get the same capability without giving anyone else your info.

The internet standards governing the exchange of contact and calendar information are
called CardDAV and CalDAV. Most calendar and contact apps on phones or computers will be
able to interact with any server that speaks these languages. One great open-source
CalDAV/CardDAV server is called Radicale[URL10]. It’s written in
Python and can run on any kind of machine.

It’s nearly trivial to get it up and running at home in a way that will only be accessible
from your home network. However, it’s even better to have it running on the public
internet so that you can update your calendar while you’re away from home. To do that
requires you to configure a web server and use a reverse proxy as mentioned above. The
details are
out of the scope of this book, but I encourage you to look into it if it’s something you
think you’re interested in. Personally, I love that kind of thing.



Personal cloud for documents and photos

As mentioned above, Nextcloud is the easiest way to get started with your own cloud file
synchronization system.

For all you advanced web server operators out there, Seafile[URL11]
is another excellent option. It has phone and desktop clients for all major systems,
and can auto-upload photos taken on your phone.



Self-hosting your own e-mail

No one recommends self-hosting your own e-mail anymore. In fact, most corporate IT
departments don’t even want to host e-mail; many of them are migrating to
cloud-based services maintained by a few major companies. However, for those of us who
really want to achieve the ultimate badge of honor in self-hosting (and the associated
inability to get your e-mails through to a bunch of people), just know that it is
certainly possible. Dovecot and postfix are the server components,
and spamassassin with Bayesian filtering is surprisingly effective against spam. As
you configure your server, send a test e-mail to services such as https://mail-tester.com,
which will analyse it and produce a report telling you of any server configuration issues
you still have to work out. Once you get a 10/10 score, you’re good to go.



That wraps up this bonus chapter. I hope this brief tour will inspire the brave and
curious among you to investigate the fascinating world of self-hosting.

Footnotes



[1]
Of course your ISP can always snoop on your metadata. Unless you use the
ultimate in network security: The Onion Router.



[URL01]
https://www.digitalocean.com/



[URL02]
https://www.linode.com/



[URL03]
https://nextcloud.com/



[URL04]
http://owncloud.com/



[URL05]
https://www.home-assistant.io/



[URL06]
https://www.allaboutbirds.org/guide/Common_Loon/sounds



[URL07]
https://openvpn.net/



[URL08]
https://openwrt.org/docs/guide-quick-start/begin_here



[URL09]
https://oldwiki.archive.openwrt.org/doc/howto/openvpn-streamlined-server-setup



[URL10]
https://radicale.org/



[URL11]
https://www.seafile.com







            

          

      

      

    

  

    
      
          
            
  
Conclusion

From slinging PDFs to DJing a dance to making the next great web app, the tools and
practices you’ve now experienced are true digital superpowers. You have completed the
first step to becoming a digital superhero (or mastermind, or wizard, or whatever form of
expert you aspire to become). While you now know some of these tools as well as you ever
will need, mastery in all of them is readily attainable through additional practice and
effort. You will find that mastery will come naturally as you reach for these tools again
and again. You’ll start out using one little feature (perhaps the one you learned in this
book), and you’ll wonder if there’s a tweak that gives you a slightly different behavior.
You’ll build skill upon skill this way, personally crafting your superpowers to meet your
specific needs, interests, and dreams.

Go forth and fulfill those dreams! Good luck.


Footnotes



            

          

      

      

    

  

    
      
          
            
  
Glossary


	2-factor authentication
	2FA is a means for a computer user to identify themself and authenticate using
both something they know (usually a password) with something they have (often a
phone or keychain with changing digits on it).



	Bit
	A single one or zero; the fundamental digit in the binary number system.



	Byte
	Eight bits together, representing a number between 0 and \(2^8-1\) or 255



	Bitmap
	Computer graphics represented as a connected grid of pixels of different colors
that make up an image. Used often to represent photographs on computers.



	Cascading Style Sheets
	A system of text files that define the look and feel of a web page separately from
the files and/or data that make up the content of the page.



	CMS
	A content management system is Web-based software that assists in building and
maintaining websites in user-friendly ways.



	Cloud
	Always-available computer servers running on the internet. Often used as an
alternate place to store files or e-mails rather than on a local hard disk drive.



	Command line
	The interface on many computer systems that allows the user to enter text commands
to be processed. Infamous for looking hacky but actually being extremely
expressive and useful.



	Central Processing Unit
	The CPU is the “brain” of a computer, it’s a microprocessor that crunches all the
numbers. Made of billions and billions of little transistors etched onto a silicon
wafer.



	Dark web
	Any part of the internet that isn’t readily available for browsing by the public.
Technically includes your friends’ e-mails since not everyone is authorized to see
them.  Typically used in practice to refer to the black market networks running
alongside more legitimate services in The Onion Router.



	Database
	A computer system designed to receive, store, and retrieve large amounts of
information from multiple concurrent other computer systems.



	DNS
	The Domain Name System is a “phonebook” for computer networks that maps readable
names like www.webpage.com to computer-usable IP addresses like
255.255.255.20.



	EFF
	Electronic Frontier Foundation[URL01] is a nonprofit defending
digital privacy, free speech, and innovation.



	Encryption
	The process of hiding information from prying eyes on network or elsewhere using
math. Can also validate that information was sent unchanged from a particular
individual.



	GNU
	Gnu’s Not Unix (GNU) (recursive acronym) is a free-software collaboration project
that started in 1983 and continues to this day. Many free, open-source tools are
developed under the GNU umbrella.



	GUI
	A Graphical User Interface uses a monitor and a mouse or touchscreen to provide a
visual-based experience in using a computer program rather than a purely text-driven
environment. Windows and macOS are GUI OSs, while DOS was not (if you recall DOS).



	Hard drive
	The device in a computer that stores information like documents, photos, programs,
and so on for long periods of time. Contrast with RAM (see Memory).



	IP address
	An Internet Protocol address defines where a computer is on a computer network,
similar to a street address in real life. It is numerical, either four numbers
between 0 and 255 separated by periods (IPv4) or eight groups of four hexadecimal
digits separated by colons (IPv6). All domain names and other human-readable
network locations are mapped to IP addresses via DNS.



	ISP
	An Internet Service Provider is a company you pay to deliver a connection to the
public internet. Examples include Comcast, CenturyLink, Charter, etc.



	LaTeX
	A document typesetting and publishing system that separates content from
presentation.



	Lightweight markup language
	A markup language with an intentionally-simple syntax, often to accommodate rapid
creation by a human writer.



	Linear regression
	The process of finding the equation of a line that best fits a given set of data
points.



	Linux
	An open-source operating system that powers many servers that make up the
internet, all Android smart-phones, all of the top 500 largest supercomputers on
Earth, and a small but growing number of PCs.



	macOS
	A proprietary operating system made by Apple and used on Apple computers and iPhones.



	Markup language
	A way to express something to a computer using a text file with special text-based
annotations. For instance, while italics cannot be represented directly in a pure
text file, a word could be indicated as italicized by surrounding it in in <i>
tags. Markup languages are used often for rich data exchange (e.g. HTML and
XML).



	Memory
	Hardware that can store large chunks of information on a computer for some period
of time. Memory is typically used for Random Access Memory (RAM), which is a
short-lived fast-acting memory. There’s also hard-drive memory which is slower,
larger, and cheaper.



	Network Attached Storage
	A NAS is a bank of large hard drives that are made available on a network, often
used for backups of photos and videos.



	Noise
	Random information present on any analog signal such as the hiss on the radio or
the snow on old TVs



	Onion router
	A web-browsing technology that offers increased anonymity and security
over normal browsing.  It hides the web pages you’re browsing from the
infrastructure and hides your place of origin from the web pages you
browse.



	Operating system
	An OS is a set of software that runs a computer. It interacts with all hardware
and provides the environment in which other programs run. Examples are Windows,
macOS, and Linux.



	Package manager
	A program that can go out on the internet and find a different program, download
it, install it, configure it, and (later, if desired) uninstall it. These pre-date
app stores but are very similar in concept. These allow for easy program
management, often though at least nominally more secure channels than random
downloads. Each OS has its own package managers.



	Password manager
	A program or service that stores various passwords for various services in one
place. It also has facilities for generating random passwords to avoid the problems
of password-reuse.



	Programming
	Writing a sequence of operations for a computer to perform. The process of
creating software.



	Regular expressions
	A general pattern representing some combination of letters, numbers, punctuation,
and other characters that is used for advanced searching and replacing in text and
data processing.



	Router
	A network component that receives packets and forwards them to a client or other
network that it knows about but perhaps the sender does not (and vice versa).



	Secure Shell (SSH)
	A means for accessing the command line of a computer that’s connected to you by a
network that maintains strong security along the network as commands and responses
are passed back and forth.



	Static site generator
	A program or system that converts lightweight markdown language code and images
into a full HTML website. It’s effectively a lightweight CMS.



	Text editor
	A program that views and modifies text files.



	Text file
	A universal file that only contains sequences of characters without any embedded
information about font, style, etc. These are very useful and fundamental as an
interface file between various steps of data processing, publishing, programming,
etc.



	Top-level domain
	A TLD is the suffix of a domain name like .com or .edu or even .horse.



	Vector graphics
	Computer graphics defined by mathematical equations rather than grids of pixels.
For certain types of images (e.g. icons, logos) they are nice because they use
very few bits but can be zoomed in on infinitely. Contrast with Bitmaps.



	Virtual machine
	A computer program that emulates the hardware of a different computer system.



	VPN
	A Virtual Private Network is a technology that securely connects through the public
internet to servers you are specially authorized on. Used frequently for
businesses, allowing employees to connect to corporate intranet resources like
shared drives while away on travel. Also offered as a commercial service to help
add network security and privacy for consumers.



	VST
	Virtual Studio Technology[URL02] is a specification
that defines how a large set of software plugins work together while composing
music on a computerized studio.



	Windows
	A proprietary operating system made by Microsoft that runs on most consumer and
office PCs.






Footnotes



[URL01]
https://www.eff.org/



[URL02]
https://en.wikipedia.org/wiki/Virtual_Studio_Technology





            

          

      

      

    

  

    
      
          
            

Index



 Symbols
 | A
 | B
 | C
 | D
 | E
 | F
 | G
 | H
 | I
 | J
 | K
 | L
 | M
 | N
 | O
 | P
 | Q
 | R
 | S
 | T
 | U
 | V
 | W
 


Symbols


  	
      	2-factor authentication


  

  	
      	3-D modeling


  





A


  	
      	Adblockers


      	Adobe Acrobat


      	Amazon


  

  	
      	Amazon Web Services


      	Arduino


      	Audacity


      	Audio processing


  





B


  	
      	Backups


      	BibTeX


      	Bit


  

  	
      	Bitmap, [1]


      	Blender, [1]


      	Byte


  





C


  	
      	C


      	CAD


      	Cascading Style Sheets, [1]


      	Central Processing Unit


      	Clone stamp


      	Cloud, [1]


      	Cloudflare


  

  	
      	CMS, [1]


      	Column edit


      	Command line, [1]


      	Compiling


      	Compression


      	Computer vision


      	Concentration


      	Cross-references


  





D


  	
      	Dark web, [1]


      	Darktable


      	Database


      	Diceware


      	Digital darkroom


      	Django


      	DJing


  

  	
      	DNS, [1], [2]


      	Docker


      	Domain name


      	DOS


      	DOSBox


      	Dropbox


      	Drum machine


      	DuckDuckGo


  





E


  	
      	eBooks


      	EFF


      	Encryption, [1]

      
        	Bitlocker


        	E-mail


        	File


        	Messaging


        	Public-key cryptography


        	Text messages


      


  

  	
      	ePub


      	ESP8266


  





F


  	
      	ffmpeg


      	File extensions


      	Files


      	Find and replace, [1]


      	Firefox


  

  	
      	Firewall


      	Flowcharts


      	Folders


      	Fraud


      	FreeCAD


      	Fusion 360


  





G


  	
      	Game engine


      	GIMP


      	git


      	GNU


      	GNU utilities


  

  	
      	GnuPG


      	Gpg4win


      	Graphviz


      	Grep


      	GUI


  





H


  	
      	Hard drive


      	HSL


  

  	
      	HTML


      	Hydrogen


  





I


  	
      	iCloud


      	Image conversion


      	Image manipulation


      	ImageMagick


      	Index


  

  	
      	Inkscape


      	
    Install

      
        	
    see Package managers


      


      	IP address


      	ISP


  





J


  	
      	Jekyll


  

  	
      	JPEG


  





K


  	
      	KdenLive


      	Key pair


  

  	
      	Keyboard shortcuts


      	Kindle


      	Krita


  





L


  	
      	LaTeX, [1]


      	LEDs


      	Lightweight markup language, [1]


      	Linear regression


  

  	
      	Linux


      	Logos


      	Logseq


      	LyX


  





M


  	
      	Machine learning


      	macOS


      	Making thumbnails


      	Markdown


      	Markup language


      	Medium


  

  	
      	Memory


      	Mixxx


      	mogrify


      	Montages


      	Movies


      	Music, [1]


      	MyNoise.net


  





N


  	
      	Name server


      	Network Attached Storage


      	Network attached storage


  

  	
      	Noise


      	Noise generator


      	Notes


  





O


  	
      	Obsidian


      	Office suites


      	OneDrive


      	Onion router


      	Onion routing


      	OpenCV


  

  	
      	OpenSCAD


      	OpenShot


      	OpenToonz


      	Operating system, [1]

      
        	Linux


        	macOS


        	Windows


      


  





P


  	
      	Package manager


      	Package managers

      
        	Apt


        	Chocolatey


        	Homebrew


      


      	Pandoc


      	Password


      	Password manager, [1]

      
        	1Password


        	Keepassxc


        	Lastpass


      


      	Passwords


      	Pattern matching, [1]


      	PDFs


      	pdftk


      	Perl, [1]


  

  	
      	Phishing


      	Photography


      	Photoresistor


      	Pihole


      	Pitch modification


      	Podcasts


      	Port forwarding


      	POV-Ray


      	
    Powershell

      
        	
    see Command line


      


      	Print screen


      	Printers


      	Programming, [1]


      	Programming languages


      	Prototype board


      	Publishing online


      	Python


  





Q


  	
      	QR code


  





R


  	
      	Rainbow tables


      	Ransomware


      	Raspberry Pi, [1]


      	RAW


      	Ray-tracing


      	Reference management


  

  	
      	Regular expressions, [1]


      	Relays


      	Resitors


      	ReStructuredText


      	robocopy


      	Router, [1]


      	rsync


  





S


  	
      	Save As


      	Scams


      	Screenshots


      	Secure Shell (SSH)


      	Security


      	Signal


      	Snipping tool


  

  	
      	Sonar


      	Sound card


      	Source code


      	Sphinx, [1]


      	Spreadsheets


      	Static site generator, [1]


      	Synthesizers


  





T


  	
      	Tab completion


      	
    Terminal

      
        	
    see Command line


      


      	TeXstudio


      	Text editor


      	Text editors

      
        	gedit


        	sublime


        	vim


      


  

  	
      	Text file


      	Tikz


      	Time-lapse, [1]


      	Top-level domain, [1]


      	
    Tor

      
        	
    see Onion routing


      


      	Track changes


      	Transistor


  





U


  	
      	
    Uninstall

      
        	
    see Package managers


      


  

  	
      	Unit conversion


      	Unity3D


  





V


  	
      	Vector graphics, [1]


      	Version control system


      	Video conversion


      	Video editing


  

  	
      	Video games


      	Virtual machine, [1]


      	Virtualbox


      	VPN, [1]


      	VST


  





W


  	
      	Wardriving


      	Web application


      	Web page, [1]


      	Web server


  

  	
      	Wi-Fi


      	Windows


      	Wix


      	Wordpress, [1]


  







            

          

      

      

    

  

    
      
          
            
  
Acknowledgments

I’m most deeply indebted to the multitudes of volunteers who have developed and maintained the
open-source tools discussed within this book. Each and every tool mentioned
has a Donate button prominently featured on their web page.

Thanks to Chris Rycroft, who exposed me to many of the tools discussed and held my hand
while I picked a few of them up. Thanks to Suzanne Wehrenberg for encouragement and
editing services. Thanks to Neal Touran for letting me help him install that math
co-processor to speed up DOOM (though if I recall it didn’t help much). Thanks to Kathryn
Touran, sorry about you being the victim of my first program, Bad Insult Pro. And to
Molly Touran and Jack Touran too, you guys always encourage and inspire me. Thanks to Howard Bates,
Aaron Spaniak, Colban Holmes, and Ben Frederick for teaching me and encouraging me in the
early years. Thanks to Donovan Irish, who brought his cousin on a long car ride to a
soccer tournament years back, inspiring a long and fateful chain of events involving me
learning Perl in 1997 and dealing with the fall-out in 2007. Thanks to Tom Clinger who
gave me my first C++ compiler. Thanks to Chuck Wemple and Dan Wessol at the Idaho National
Lab for giving me those two weeks to learn Python. Thanks to Professor John Lee for giving
me hard problems to solve in school, and to Jeff Davis, Eric Baker, Seth Johnson, Natallia
Pinchuk, Jeremy Conlin, Ceris Geoghegan, and Allan Wollaber for helping me to solve them.
Big thanks to Graham Malmgren, Mitch Young, Jesse Cheatham, Evan Albright, Mark Onufer, Rachel Slaybaugh,
and Paul Romano for dealing with me and teaching me during my long journey towards
professionalism. Also to Paul Humrickhouse; I’ll always fondly remember Solaris weekend.
Special thanks to Jacek Zlydach for being an early adopter and providing very useful
feedback.

Lastly, a big thanks to Bill Gates for envisioning and implementing the “information at
your fingertips” dream, and to my wife Laura for being herself.


Footnotes



            

          

      

      

    

  

    
      
          
              
          

      

    

  _static/radiometer-results.png
Relative intensity

Power (dB)

800

700

600

500

400

300
0.

110
100
90
80
70
60
50
40

30
0

Intensity vs. time of high intensity 120fps.AVI

0.5 1.0 15 2.0
Time (s)

25 3.0

Frequency analysis for high intensity 120fps.AVI

10 20 30
Frequency (Hz)

40 50

60





_static/random-data.png
2.72337737 9.96801996

N
2|

"3 | 4.48134377 16.3558232
4 | 1.20537228 3.55701239
"5 | 480170672 15.5727303
"6 | 1.74394316 5.27918594
7 | 3.79467892 17.9391624
& | 0.09536572 0.50969187
9 | 3.73022051 14.4704398
10 | 0.63912977 2.12314499
11 | 1.46911346  7.2990603
12 | 0.77471679 3.95056734
13 | 054363541 7.48054793
14 | 1.00705999 2.30254887
15 | 167254084 4.65955513
435097146 15.6558039
17 | 040116527 6.60823643
18 | 4.45521565 21.4728294
19 | 2.83531263 13.4286586
20 | 1.42569761 8.60714881
21 | 486064028 19.1467933
22 | 4.05399503 19.7532507
23 | 0.60356886 4.77548493
24 | 4.73506626 15.8056171
25 | 0.68888264 29597832
26 | 0.83118009 7.91973463
27 | 3.92834423 14.1075571
28 | 3.76204074 15.6992754
29 | 3.45298583 13.437501






_static/qr_scan.jpg
{] Barcode Scanner

My Actual Home WiFi (WPA)

Format OR_CODE
"

Time 12725/18 1000

Metadata i

.'M/EV/’? Y )y 7,





_static/radiometer-pixel.jpg
high intensity*120fps.AVI

00:03
@ = i H
I (wo) @) 504






_static/reactor.png





_static/regression.png
Beautiful regression

® Data
20 4 —=- Model ®
&
°
15 - o ~
-0 9
o _@
//
//
//
rd
10 1 yeag
° ° /’
. Pl
° ,"
5_ .,/// ..
7@
- o m=3.474
27 e @ b=1.819
04 o
0 1 2 3 4 5






_images/bad_webpage.png
Welcome to my web page

Iam a business consultant and you can hire me. Please contact me at 1y cmnail address,





_images/calibration_with_fit.png
Angle (degrees)

-15

|
o
°

|
o

b
5

-35

Level data

9 = -7.255e-05 rad/s

« Data
Fit

100 200 300 400
Time (s)

500 600






_images/Glasses_800_edit.jpg





_images/audacity.png
Audacity

| aPa
n & m 1« » © Tx/
Q)X
-57-+48 - Click to Start Monitoring 8 -12-9-6 3.0
57 -dg a2 36 -30 24 18 -12-9-6-30
L ¢ XDOwiw «~ aaQlelQ] e e
v 2(Stereo)F~ #) default -

Stareo, 44100Hz
326t flaat

Project Rate (Hz) SnapTo  Audio Position Start and End of Selection v

48100 of v [00h00m037735% 00hO00MO03i773s¥ 00h00M03i7735s7

Stopped.





_images/cmd.png
Best match

i Command Prompt
Desktop app

Apps

8 Microsoft Azure Command
Prompt - v2.9

% 24

B x86 Native Tools Command
Prompt for VS 2017

& Developer Command Prompt for
VS 2017

Search suggestions

£ emd-see

P cmd

>

Pin to Start

Pin to taskbar

[=]
> o
[}
=
> =

Run as aglministrator -

Open file location

Command Prompt

Open
Run as administrator
Openfile location
Pin to Start

Pin to taskbar






_images/columns.png
Fle Edt Search Vew Encodng language Selfngs Took Mazo Run Plugins

window 2

HEHB s @l4«DhD|2e|h%

4 3 |@BE|

testing 123
testing 123
testing 123
testing 123
testing 123
testing 123
testing 123
testing 123
testing 123
testing 123
testing 123
testing 123
testing 123
testing 123
testing 123
testing 123
testing 123
testing 123
testing 123
testing 123
testing 123

OK HERE WE G!
OK HERE WE G!
OK HERE WE G!
OK HERE WE G!
OK HERE WE G!
OK HERE WE G!
OK HERE WE G!
OK HERE WE G!
OK HERE WE G!
OK HERE WE G!
OK HERE WE G!
OK HERE WE G!
OK HERE WE G!
OK HERE WE G!
OK HERE WE G!
OK HERE WE G!
OK HERE WE G!
OK HERE WE G!
OK HERE WE G!
OK HERE WE G!
OK HERE WE G!

Col 127 Sel:NjA

‘Windows (CRLF) | UTF-8

s





_static/pulse_system.png
Components of the blinking light

Person submits
chant online

Server (California)

Validate

!

Raspberry Pi (Denmark)

Transmit chant

Get message

Convert to
Morse code

Turn small voltage
on and off on pin

Relay (Denmark)

Turn off
electromagnet
and light

Sees voltage
on pin

Energize electromagnet
to close switch

Sees voltage
turn off






_static/plus.png





_static/port_forward.png
New port forward

Name Protocol External External port Internal Internal IP address Internal port
zone zone

TCP+UDj wan J guest J






_images/cowsay.png
nick@nick-vaio:~$ cowsay "Oh man I love Linux"

< Oh man I love Linux >

nick@nick-vaio





nav.xhtml

    
      Table of Contents


      
        		
          Title
        


        		
          Copyright
        


        		
          Digital Superpowers
        


        		
          Introduction
          
            		
              Intended audience
            


            		
              About me
            


            		
              Philosophy
            


          


        


        		
          Fundamentals
          
            		
              Basic parts of computers
            


            		
              Operating systems
            


            		
              Files and folders
              
                		
                  Backups
                


                		
                  Network Attached Storage (NAS)
                


                		
                  File Encryption
                


                		
                  The Cloud
                


              


            


            		
              The command line
            


            		
              Programs and package managers
            


            		
              Password managers
            


            		
              Making secure but memorizable passwords with Diceware
            


            		
              Two-factor authentication
            


            		
              Common scams
            


          


        


        		
          Around the House
          
            		
              Life-changing keyboard shortcuts
            


            		
              Avoiding printer dry-out
            


            		
              Get to know your router
            


            		
              Setting a strong Wi-Fi password
            


            		
              Guest networks
            


            		
              Avoiding DNS hijack
            


            		
              Opening ports
            


            		
              Virtual machines
              
                		
                  Nostalgia alert
                


              


            


            		
              Ad-blockers
            


            		
              Using a VPN Service
            


            		
              The Onion Router and the dark web
            


            		
              Planning a night of star-gazing
            


          


        


        		
          Around the Office
          
            		
              Note on office suites
            


            		
              Concentrating in offices
            


            		
              Note Taking
            


            		
              Screenshots
            


            		
              Text editors and extensions
            


            		
              Column editing
            


            		
              Slicing and dicing PDFs
            


            		
              Ultimate find and replace (regular expressions)
            


            		
              Encrypted communications
              
                		
                  Encrypted text messaging, photos, and voice
                


                		
                  How to send, receive, and verify info securely over the public internet
                


              


            


            		
              Making flowcharts
            


            		
              The GNU utilities
              
                		
                  Unit conversion
                


                		
                  Pattern matching with grep
                


                		
                  Extracting a column with awk
                


                		
                  Multi-file find/replace
                


              


            


          


        


        		
          Art Studio
          
            		
              Basic image manipulation
              
                		
                  The clone stamp tool
                


                		
                  Image manipulations from the terminal
                


              


            


            		
              Computer graphics
              
                		
                  Vector graphics
                


                		
                  Step 1: Making a sail
                


                		
                  Step 2: More detail
                


                		
                  Color lifehack
                


                		
                  3-D Modeling with Blender
                


                		
                  Computer-Aided Design (CAD)
                


              


            


            		
              The digital darkroom
              
                		
                  The RAW advantage
                


                		
                  How to get started in the digital darkroom
                


              


            


            		
              Making podcasts, music, and sound effects
              
                		
                  The excitement of sound
                


                		
                  Recording and processing audio samples
                


                		
                  Recording for a podcast or radio show
                


                		
                  Synthesizers and music
                


              


            


            		
              DJing a party or show
            


            		
              Movies
              
                		
                  Format conversion, trimming, and time-lapses
                


                		
                  Video editing
                


              


            


            		
              Making games
            


          


        


        		
          Publishing
          
            		
              Publishing online
              
                		
                  Sign up for a web publishing service
                


                		
                  Getting your own web address
                


                		
                  Make your own web page
                


                		
                  Other Topics
                


              


            


            		
              Publishing PDFs
              
                		
                  Introduction to LaTeX
                


                		
                  How to run LaTeX
                


                		
                  Official LaTeX templates
                


                		
                  Using LaTeX from a GUI
                


                		
                  Easier workflows with lightweight markup languages
                


              


            


            		
              Publishing eBooks (and books)
            


          


        


        		
          Programming
          
            		
              Tracking changes of anything
              
                		
                  Using git
                


                		
                  Fixing something in a GitHub repository
                


              


            


            		
              Why program?
            


            		
              Programming languages
            


            		
              Writing Python programs
              
                		
                  A program to approximate \pi
                


                		
                  A linear regression
                


              


            


            		
              The bridge to machine learning
            


            		
              Graphical User Interfaces
            


            		
              Web applications
            


          


        


        		
          Robotics and Hardware
          
            		
              The era of cheap, user-friendly microcontrollers
            


            		
              Some basic peripherals
            


            		
              An interactive art installation
            


            		
              Even cheaper microcontrollers
            


            		
              A star-tracking camera mount for astrophotography
            


            		
              Controlling hardware directly from your laptop
            


          


        


        		
          Self-Hosting
          
            		
              Getting your own server
            


            		
              Well-polished self-hosted catch-all
            


            		
              Self-hosted home automation and security
            


            		
              Set up your own VPN Server
            


            		
              Your own webserver
            


            		
              Hosting your own contacts and calendar
            


            		
              Personal cloud for documents and photos
            


            		
              Self-hosting your own e-mail
            


          


        


        		
          Conclusion
        


        		
          Glossary
        


      


    
  

_images/eclipse.jpg





_images/encrypted-msg.png
hQGMA®d8dZFzT0e0AQVv/Y0igihUbA5ZEkCouh+xnDtPOUpWQct18nL5kfituq3JH
HxS50xjf36NOK/GhO9K67mopZd/bd4/N81inr jXDMQL/pR7oLwRd2YHkCBga25W6oc
34P0dOSgVNrhM619x/ZIcPPGJzZghkCXtu6kCby6UbpXfcU4EqI2MRAOTe/06yra
RXCN6p4Vxh2XE/HT/p/eYgIhvx+CFZhFfzemiyiegGFLbD5201wcGFt8Qojem2+d
Y2nTNAB7FW0JQ06skXhActo30RgfSIZHEPRS5re1XK+AFJTyP+++1MZSa919qlle/
eGzOhSr4hEPyac1Ds16ZqUsjdqyksh6vrIEgoLE85IBB2p4L1nMMpsgnMYuyx/N1
9XAWI9RsvehXpnqWIB40xu3MNZ8A15VjD68D6VMCNs1sk+M/F1/DXE@+tWnzRqzZ8
DAjLPHugjnJmVMGtbiSOuJeeqZKqz2e36ZtrTsv7uuT1lLZsfBjj1TcNNmFnjHpkQ
FbTJQDUfC2GPWMCFEND70moBKU6XGlnicvTUHg2i/zw/hbjsy/mddz3aMT74cTrn
5GsFBwpb5F5kulK91prsEJ1+BA73M/NF8dPrgVq9HXSOK5bzEU68ZyBL2/CIFRrL
PjPyKb54r3LT6b31H5AnH/+06P+2PwHifWUe

=Kct/





_images/darts.png
Approximation of

1.0 1

0.8 1

0.6

0.4 1

0.2 1

(] ’
# o Inside






_images/eclipse-row.jpg





_images/graphviz-08bfa300eae6678da15c2f223b84bb93e5a58788.png
Public internet via ISP
82.234.111.239

Your neighibor
82.234.111.240

“Your Router
192.168.1.1

Neighibor's router
192.168.1.1

Phone 1
192.168.1.102

Phone 2
192.168.1.103

Lapt

op Smart TV
192.168.1.104

192.168.1.105





_images/graphviz-baee10cb6f5be64687beb16cc37b339161198715.png
Your laptop Local government
¥ AL
L] / L]
Other guests /| Nefarious routers
/
L) K L)
1] K L]
Hotel Wi-Fi // | ‘Website
L

.y

Local Wi-Fi contractor






_images/esp8266.jpg





_images/ft232h.jpg





_images/graphviz-c4c447b340adb9a7b4828f8224b981e8852e24d7.png
Customer goes
to mysite.com

DNS looks up name,
returns delegate
‘nameserver

Handled by registrar
(c.g. Namecheap)

Nameserver points
to web server
TP address

Handled by host
(c.g. Wordpress)

Your web server
sends web page





_images/graphviz-d84a0951c4e37ae49c308579e72fb1cef737fe56.png
“Your laptop

Local government

!

\

Other guests Nefarious routers
Hotel Wi-Fi ‘ VPN operator ‘
t v

Local Wi-Fi contractor

Oblivious routers

T
v

‘Website






_images/graphviz-ecf1f576bc8a4c46e811d3cf2b5b9993e93b9b40.png
Point and
click?

graphviz dia

NS

Profit






_images/hydrogen_screenshot.png





_images/lmms.jpg
GENERALSETTINGS
sequencer_64

WO R

2 W o Ssmpletrack
A% W .. Beat/Bassline0

# W My Automationtrack

(@) (* n 1 ni
| e ENVEFO FUNC X DT |

ORGANIC |

| Kicker BE|
GENERAL SETTINGS
Kicker
(P

ENV/LFO—FUNC X MIDr

ATT 4Ql0 GEc SUs AL SLOPE

2t/Bassline 0






_images/hassmontage.jpg
X Doors
Doors
@ 1 hour ago - »
off Off off off
11:00 PM 11:00 AM
[] Front Door Closed
[1  Garage Door Closed
[1  Porch Door Closed
_[1  sliding Door Closed
X  Main Power Total o
® Main Power Total 400.65 W
20 seconds ago
8000
6000
4000
2000
0—L B !
11:00 PM 11:00 AM
node id 33
value index 8
value instance i
value id 72057594596589698

power consumption 400.647

X  Luminance

N Luminance
X

20

2 minutes ago

6.0 lux

11:00 PM

node id

value index
value instance
value id

X  Temperature

8 Temperature

3 minutes ago

node id

value index
value instance
value id

11:00 PM

11:00 AM

17
3
1

72057594328137778

e

25.6°C

11:00 AM

17

1

1
72057594328137746





_images/hottub_controller.jpg





_images/own_nas.jpg





_images/port_forward.png
New port forward

Name Protocol External External port Internal Internal IP address Internal port
zone zone

TCP+UDj wan J guest J






_images/mixxx.png
Miox2.1.3

brary
135PM (L) sacance () master

= X Mics & AUX

Dip It Low Am | 8575 SYNC

Rockin' Robin | G| 85.75  SYNC (l) 1) (l) (I) )
Chuck Berry -01:59.95 »_u:- (I)\EI (=]

Christina Feat. Samy... -00:52.52 g9

©

©

(l) v:gnu X1
© -

w2 £ ( l)
acJ e 5
= © ! e
4 T 4 1.2 CcuE 4 T 4 1.2 CcuE
TP «s 34 > |I| T @ 34 >
< FX1 @ MASTER FX2 ) MASTER
@ ©® @ @ ©® @ o6 @
hd None v None v None v

None v None v None





_images/mypub.png
On the writing of KXIEX and building of a PDF

Your name here

July 2035

1 Writing the source file

Writing the source may look odd at first, but once you start, it’s not so bad.
Also, there are WYSIWYG! editors that make it easier.
One thing that’s really nice about IXTEX is math. Here is an equation:
G—1

R=" Nipyoq

9=0

2 Another section

As you saw in Section 1, you can make equations[1].

References

[1] D. A. Brown, M. Chadwick, R. Capote, A. Kahler, A. Trkov, M. Herman,
A. Sonzogni, Y. Danon, A. Carlson, M. Dunn, et al., “Endf/b-viii. 0: The 8
th major release of the nuclear reaction data library with cielo-project cross
sections, new standards and thermal scattering data,” Nuclear Data Sheets,
vol. 148, pp. 1-142, 2018.

I'What you see is what you get





_images/qr_scan.jpg
{] Barcode Scanner

My Actual Home WiFi (WPA)

Format OR_CODE
"

Time 12725/18 1000

Metadata i

.'M/EV/’? Y )y 7,





_images/radiometer-pixel.jpg
high intensity*120fps.AVI

00:03
@ = i H
I (wo) @) 504






_images/pulse_system.png
Components of the blinking light

Person submits
chant online

Server (California)

Validate

!

Raspberry Pi (Denmark)

Transmit chant

Get message

Convert to
Morse code

Turn small voltage
on and off on pin

Relay (Denmark)

Turn off
electromagnet
and light

Sees voltage
on pin

Energize electromagnet
to close switch

Sees voltage
turn off






_images/reactor.png





_images/regression.png
Beautiful regression

® Data
20 4 —=- Model ®
&
°
15 - o ~
-0 9
o _@
//
//
//
rd
10 1 yeag
° ° /’
. Pl
° ,"
5_ .,/// ..
7@
- o m=3.474
27 e @ b=1.819
04 o
0 1 2 3 4 5






_images/radiometer-results.png
Relative intensity

Power (dB)

800

700

600

500

400

300
0.

110
100
90
80
70
60
50
40

30
0

Intensity vs. time of high intensity 120fps.AVI

0.5 1.0 15 2.0
Time (s)

25 3.0

Frequency analysis for high intensity 120fps.AVI

10 20 30
Frequency (Hz)

40 50

60





_images/random-data.png
2.72337737 9.96801996

N
2|

"3 | 4.48134377 16.3558232
4 | 1.20537228 3.55701239
"5 | 480170672 15.5727303
"6 | 1.74394316 5.27918594
7 | 3.79467892 17.9391624
& | 0.09536572 0.50969187
9 | 3.73022051 14.4704398
10 | 0.63912977 2.12314499
11 | 1.46911346  7.2990603
12 | 0.77471679 3.95056734
13 | 054363541 7.48054793
14 | 1.00705999 2.30254887
15 | 167254084 4.65955513
435097146 15.6558039
17 | 040116527 6.60823643
18 | 4.45521565 21.4728294
19 | 2.83531263 13.4286586
20 | 1.42569761 8.60714881
21 | 486064028 19.1467933
22 | 4.05399503 19.7532507
23 | 0.60356886 4.77548493
24 | 4.73506626 15.8056171
25 | 0.68888264 29597832
26 | 0.83118009 7.91973463
27 | 3.92834423 14.1075571
28 | 3.76204074 15.6992754
29 | 3.45298583 13.437501






_images/same_hsl.png





_images/sail-screenshot.png
sailsvg (nofilters) - Inkscape

[0 Hide all except selected

O Close when complete f Export

&

sions  Help
O ¢« 1 & i a -
.S 0 s 0 [ o = —1
A bbbt i ™ B Export PNG Image (Shift+Ctrl+E) 8 ®z B %
K - Export area R
= &
£ - Page Drawing | Selection  Cusom & &
N H -~
- - 3 =
Q= X0: 39285  y0: 160615 _ &
= N Dt o
® - X 146680 yio 271790
3 - - E .
= » E
— Width: 107395 Height: 111175 _
@1 S =
o - Units: mm ~ § e
& E Image size N N g o #
- Width: 634  pixelsat 15000  _ dpi g
© - 2 x
2y 8 Height: 657 ~ pixelsat £
= § 2
¥ - Filename E
1 2n_superpowers/_static/sail.png _# Export As... S o,
LA E @ ™
AT a 3
iu|
@





_images/sail1.png





_images/stellarium.jpg
Moon

Type: mool
Magnitude: " 1246 kextm(te to: -11.88)
Absolute Magnitude:

Mean Opposition Magmtu e:12.74

RA/Dec (/2000.0): 8h05mi52.955/+19°54'53.5"
RA/Dec (on date): 8h0700.325/+19°51'26.7"
HA/Dec: 17h48m27.345/+19°54'32.9" (apparent)

+53°05'20.1"/-50°20'52.8"
0.0): +119°23'47.7"

1AU Constellation: Cnc
istance from Sun: 0.986 AU (147.561 M km)
istance: 0.002383 AU (356453.199 km)

/ Equatorial rotation velocity: 0.005 kmjs
Apparent dlzmeter +0°33'30.71"
Diameter: 347

sidereal period: 27. % days (0.075 a)

sidereal day: 655ha3m11.55

Mean solar day: 708h44m02.85

synodic period: 29.53 days (0.081 a)

120
fe: 14.7 days old

incer

a1 718

aran

Gemini

Eridanu

&-Cancrids

Canis Minor

SE

Earth, Seattle, 0 m

N OO0 248

FOV 60° 30.8FPS  2019-01-20 18:03:49 UTC-08:00

SHL oM TH+ WP TN O





_images/sunset_developed.jpg





_images/sensor-montage.jpg





_images/startracker.jpg





_images/tracker_schematic.png





_images/watch.jpg
“ILLUMINATOR®.
WATER RESIST

CASIO ALARM CHRONO

® LIGHT MODE ®

WATER RESIST

® LIGHT





_images/sunset_orig.jpg





_images/tikz-ce71ff7259fde08ea3977445344105af32fe866f.png





_images/works-in-vm.jpg
File Machine Help

,_A} > e

New  Settings show Machine Tools | | Global Tools
machines and virtual machine groups on
your computer.

WinDev1811Eval
® Powered Off

Windows 3.1 [Running] - Oracle VM VirtualBox
2

| File Machine View Input Devices Help
| File Edit Print Select Format Options Window Help
[ 5 ? n

WORD1. LIPS

i






_static/tracker_schematic.png





_static/Glasses_800_edit.jpg





_static/works-in-vm.jpg
File Machine Help

,_A} > e

New  Settings show Machine Tools | | Global Tools
machines and virtual machine groups on
your computer.

WinDev1811Eval
® Powered Off

Windows 3.1 [Running] - Oracle VM VirtualBox
2

| File Machine View Input Devices Help
| File Edit Print Select Format Options Window Help
[ 5 ? n

WORD1. LIPS

i






_static/watch.jpg
“ILLUMINATOR®.
WATER RESIST

CASIO ALARM CHRONO

® LIGHT MODE ®

WATER RESIST

® LIGHT





_static/startracker.jpg





_static/sensor-montage.jpg





_static/sunset_developed.jpg





_static/stellarium.jpg
Moon

Type: mool
Magnitude: " 1246 kextm(te to: -11.88)
Absolute Magnitude:

Mean Opposition Magmtu e:12.74

RA/Dec (/2000.0): 8h05mi52.955/+19°54'53.5"
RA/Dec (on date): 8h0700.325/+19°51'26.7"
HA/Dec: 17h48m27.345/+19°54'32.9" (apparent)

+53°05'20.1"/-50°20'52.8"
0.0): +119°23'47.7"

1AU Constellation: Cnc
istance from Sun: 0.986 AU (147.561 M km)
istance: 0.002383 AU (356453.199 km)

/ Equatorial rotation velocity: 0.005 kmjs
Apparent dlzmeter +0°33'30.71"
Diameter: 347

sidereal period: 27. % days (0.075 a)

sidereal day: 655ha3m11.55

Mean solar day: 708h44m02.85

synodic period: 29.53 days (0.081 a)

120
fe: 14.7 days old

incer

a1 718

aran

Gemini

Eridanu

&-Cancrids

Canis Minor

SE

Earth, Seattle, 0 m

N OO0 248

FOV 60° 30.8FPS  2019-01-20 18:03:49 UTC-08:00

SHL oM TH+ WP TN O





_static/sunset_orig.jpg





_static/calibration_with_fit.png
Angle (degrees)

-15

|
o
°

|
o

b
5

-35

Level data

9 = -7.255e-05 rad/s

« Data
Fit

100 200 300 400
Time (s)

500 600






_static/cmd.png
Best match

i Command Prompt
Desktop app

Apps

8 Microsoft Azure Command
Prompt - v2.9

% 24

B x86 Native Tools Command
Prompt for VS 2017

& Developer Command Prompt for
VS 2017

Search suggestions

£ emd-see

P cmd

>

Pin to Start

Pin to taskbar

[=]
> o
[}
=
> =

Run as aglministrator -

Open file location

Command Prompt

Open
Run as administrator
Openfile location
Pin to Start

Pin to taskbar






_static/bad_webpage.png
Welcome to my web page

Iam a business consultant and you can hire me. Please contact me at 1y cmnail address,





_static/cover.png
DIGITAL
SUPERPOWERS

A whirlwind tour of readily-available
tools that turbocharge productivity,
ignite creativity, and empower learning

Nick Touran





_static/columns.png
Fle Edt Search Vew Encodng language Selfngs Took Mazo Run Plugins

window 2

HEHB s @l4«DhD|2e|h%

4 3 |@BE|

testing 123
testing 123
testing 123
testing 123
testing 123
testing 123
testing 123
testing 123
testing 123
testing 123
testing 123
testing 123
testing 123
testing 123
testing 123
testing 123
testing 123
testing 123
testing 123
testing 123
testing 123

OK HERE WE G!
OK HERE WE G!
OK HERE WE G!
OK HERE WE G!
OK HERE WE G!
OK HERE WE G!
OK HERE WE G!
OK HERE WE G!
OK HERE WE G!
OK HERE WE G!
OK HERE WE G!
OK HERE WE G!
OK HERE WE G!
OK HERE WE G!
OK HERE WE G!
OK HERE WE G!
OK HERE WE G!
OK HERE WE G!
OK HERE WE G!
OK HERE WE G!
OK HERE WE G!

Col 127 Sel:NjA

‘Windows (CRLF) | UTF-8

s





_static/cowsay.png
nick@nick-vaio:~$ cowsay "Oh man I love Linux"

< Oh man I love Linux >

nick@nick-vaio





_static/sail-screenshot.png
sailsvg (nofilters) - Inkscape

[0 Hide all except selected

O Close when complete f Export

&

sions  Help
O ¢« 1 & i a -
.S 0 s 0 [ o = —1
A bbbt i ™ B Export PNG Image (Shift+Ctrl+E) 8 ®z B %
K - Export area R
= &
£ - Page Drawing | Selection  Cusom & &
N H -~
- - 3 =
Q= X0: 39285  y0: 160615 _ &
= N Dt o
® - X 146680 yio 271790
3 - - E .
= » E
— Width: 107395 Height: 111175 _
@1 S =
o - Units: mm ~ § e
& E Image size N N g o #
- Width: 634  pixelsat 15000  _ dpi g
© - 2 x
2y 8 Height: 657 ~ pixelsat £
= § 2
¥ - Filename E
1 2n_superpowers/_static/sail.png _# Export As... S o,
LA E @ ™
AT a 3
iu|
@





_static/sail-done.png
A

SAIL LIFE





_static/same_hsl.png





_static/sail1.png





_static/audacity.png
Audacity

| aPa
n & m 1« » © Tx/
Q)X
-57-+48 - Click to Start Monitoring 8 -12-9-6 3.0
57 -dg a2 36 -30 24 18 -12-9-6-30
L ¢ XDOwiw «~ aaQlelQ] e e
v 2(Stereo)F~ #) default -

Stareo, 44100Hz
326t flaat

Project Rate (Hz) SnapTo  Audio Position Start and End of Selection v

48100 of v [00h00m037735% 00hO00MO03i773s¥ 00h00M03i7735s7

Stopped.





_static/esp8266.jpg





_static/eclipse.jpg





_static/encrypted-msg.png
hQGMA®d8dZFzT0e0AQVv/Y0igihUbA5ZEkCouh+xnDtPOUpWQct18nL5kfituq3JH
HxS50xjf36NOK/GhO9K67mopZd/bd4/N81inr jXDMQL/pR7oLwRd2YHkCBga25W6oc
34P0dOSgVNrhM619x/ZIcPPGJzZghkCXtu6kCby6UbpXfcU4EqI2MRAOTe/06yra
RXCN6p4Vxh2XE/HT/p/eYgIhvx+CFZhFfzemiyiegGFLbD5201wcGFt8Qojem2+d
Y2nTNAB7FW0JQ06skXhActo30RgfSIZHEPRS5re1XK+AFJTyP+++1MZSa919qlle/
eGzOhSr4hEPyac1Ds16ZqUsjdqyksh6vrIEgoLE85IBB2p4L1nMMpsgnMYuyx/N1
9XAWI9RsvehXpnqWIB40xu3MNZ8A15VjD68D6VMCNs1sk+M/F1/DXE@+tWnzRqzZ8
DAjLPHugjnJmVMGtbiSOuJeeqZKqz2e36ZtrTsv7uuT1lLZsfBjj1TcNNmFnjHpkQ
FbTJQDUfC2GPWMCFEND70moBKU6XGlnicvTUHg2i/zw/hbjsy/mddz3aMT74cTrn
5GsFBwpb5F5kulK91prsEJ1+BA73M/NF8dPrgVq9HXSOK5bzEU68ZyBL2/CIFRrL
PjPyKb54r3LT6b31H5AnH/+06P+2PwHifWUe

=Kct/





_static/hassmontage.jpg
X Doors
Doors
@ 1 hour ago - »
off Off off off
11:00 PM 11:00 AM
[] Front Door Closed
[1  Garage Door Closed
[1  Porch Door Closed
_[1  sliding Door Closed
X  Main Power Total o
® Main Power Total 400.65 W
20 seconds ago
8000
6000
4000
2000
0—L B !
11:00 PM 11:00 AM
node id 33
value index 8
value instance i
value id 72057594596589698

power consumption 400.647

X  Luminance

N Luminance
X

20

2 minutes ago

6.0 lux

11:00 PM

node id

value index
value instance
value id

X  Temperature

8 Temperature

3 minutes ago

node id

value index
value instance
value id

11:00 PM

11:00 AM

17
3
1

72057594328137778

e

25.6°C

11:00 AM

17

1

1
72057594328137746





_static/file.png





_static/ft232h.jpg





_static/darts.png
Approximation of

1.0 1

0.8 1

0.6

0.4 1

0.2 1

(] ’
# o Inside






_static/eclipse-row.jpg





_static/minus.png





_static/mixxx.png
Miox2.1.3

brary
135PM (L) sacance () master

= X Mics & AUX

Dip It Low Am | 8575 SYNC

Rockin' Robin | G| 85.75  SYNC (l) 1) (l) (I) )
Chuck Berry -01:59.95 »_u:- (I)\EI (=]

Christina Feat. Samy... -00:52.52 g9

©

©

(l) v:gnu X1
© -

w2 £ ( l)
acJ e 5
= © ! e
4 T 4 1.2 CcuE 4 T 4 1.2 CcuE
TP «s 34 > |I| T @ 34 >
< FX1 @ MASTER FX2 ) MASTER
@ ©® @ @ ©® @ o6 @
hd None v None v None v

None v None v None





_static/logo.png
DIGITAL
SUPERPOWERS






_static/logo_w.png
DIGITAL
SUPERPOWERS






_static/pi.png
10

0.8

0.6

0.4

02

0.0

Approximation of i

&
Inside
= Outside
0.0 02 0.4 0.6 0.8 10

y (m)






_static/mypub.png
On the writing of KXIEX and building of a PDF

Your name here

July 2035

1 Writing the source file

Writing the source may look odd at first, but once you start, it’s not so bad.
Also, there are WYSIWYG! editors that make it easier.
One thing that’s really nice about IXTEX is math. Here is an equation:
G—1

R=" Nipyoq

9=0

2 Another section

As you saw in Section 1, you can make equations[1].

References

[1] D. A. Brown, M. Chadwick, R. Capote, A. Kahler, A. Trkov, M. Herman,
A. Sonzogni, Y. Danon, A. Carlson, M. Dunn, et al., “Endf/b-viii. 0: The 8
th major release of the nuclear reaction data library with cielo-project cross
sections, new standards and thermal scattering data,” Nuclear Data Sheets,
vol. 148, pp. 1-142, 2018.

I'What you see is what you get





_static/own_nas.jpg





_static/hydrogen_screenshot.png





_static/lmms.jpg
GENERALSETTINGS
sequencer_64

WO R

2 W o Ssmpletrack
A% W .. Beat/Bassline0

# W My Automationtrack

(@) (* n 1 ni
| e ENVEFO FUNC X DT |

ORGANIC |

| Kicker BE|
GENERAL SETTINGS
Kicker
(P

ENV/LFO—FUNC X MIDr

ATT 4Ql0 GEc SUs AL SLOPE

2t/Bassline 0






_static/hottub_controller.jpg





